Granulocyte Colony Stimulating Factor (G-CSF)


Neutropenia is a dose limiting toxicity of chemotherapy. It results in delay and dose reduction both of which adversely affect outcomes of treatment. Myeloid growth factors are biological agents that stimulate the production go granulocytes and offset the myelosupressive effect of chemotherapy. Two myeloid growth factors are available Granulocytic colony stimulating factor (G-CSF) and granulocytic monocytic colony simulating factor (GM-CSF). This article will discuss G-CSF as it is used more often than GM-CSF. Commertially available G-CSF is made by recombinant DNA technology and may be produced in E. coli (Filgrastim) or chinese hamster ovary cell lines (lenograstim). The half life of filgrastim can be increased by covalently linking it to polyethylene glycol (PEG) and converting it to pegfilgrastim.

Mechanism of Action of G-CSF

G-CSF is a 174 amino acid peptide the gene for which is on chromosome 17. It has a molecular weight of 18kDa. It is produced by monocytes, macrophages, fibroblasts, endothelial cells and keratinocytes in response to inflammatory cytokines and bacterial endotoxin.

G-CSF acts via the G-CSF receptor. G-CSF receptor is a transmembrane receptor that form a homodimer on binding G-CSF. Activation of G-CSF receptor results in activations of  JAK/STAT, SRC family of kinases, PI3/AKT and Ras/ERK 1/2. The details of the pathway are not completely understood.

G-CSF AAB.002

Activations of G-CSF has the following effects that lead to increased production of neutrophils

  1. Increased Proliferation of Neutrophilic precursors
  2. Shortened neutrophilic precursor bone marrow transit time
  3. Functions maturation of neutrophils – increased chemotaxis, phagocytosis and antibody dependent cytotoxicity

G-CSFs Available for Clinical Use

G-CSFs for clinical use is manufactured by recombinant DNA technology. Two molecules are available for clinical use. Filgrastim is produced using E. coli and lenograstim is obtained from Chinese hamster ovarian cells. Lenograstim is glycosylated (4% glycosylation).

Filgrastim on subcutaneous administration filgrastim has a half life of 2.5-5.8 hours. The drug is eliminated by uptake be G-CSF receptors on neutrophils and glomerular filtration. Pegylation, that involves attaching a 20kDa polyethylene glycol (PEG) molecule to the N terminal eliminates renal elimination prolonging the half life to 27-47 hours. The product, pegfilgrastim, is only eliminated by binding to neutrophil G-CSF receptors, patients with low neutrophil counts have a lower clearance. Prevention of glomerular filtration allows administration of pegfilgrastim only once in a chemotherapy cycle.

Indications for G-CSF

The discussion that follows applies to filgrastim and perfilgrastim as these drugs are used more commonly than lenograstim. The general principle apply to lenograstim but readers are advised to refer to information on lenograstim for details of use and adverse effects.

  1. Primary prevention of febrile neutropenia (FN) in patients with non-Myeloid malignancy on chemotherapy: Patients where on chemotherapy protocols that have a risk of febrile neutropenia equal to or greater than 20% should be administered G-CSF.
  2. Prevention of recurrence of febrile neutropenia: G-CFS may be used to prevent recurrence of febrile neutropenia in patients who have had an episode of infection in a previous chemotherapy cycle.
  3. Treatment of patients with febrile neutropenia: Initiating therapy with G-CSF after febrile neutropenia has set in has not been shown to decrease mortality of antibiotic use. It may however be used in patients who are at high risk of mortality.
  4. Mobilisation of stem cells for stem cell transplant
  5. Use in patients with myeloid malignancies: There is an apprehension that G-CSF may stimulate leukaemia cells and G-CSF is not used in induction. It may however be used after induction to reduct the duration of neutropenia.

Filgrastim is administered in a dose of 5μg/kg/day subcutaneously, by a short iv infusion or prolonged intravenous infection. therapy should be initiated at least 24 hours after the  chemotherapy. The adult dose of pegfilgrastim is 6mg. The paediatric dose depends on the weight of the child. Children less than 10 kg: 0.1 mg/kg, those between 10 to 20 kg be administered 1.5 mg, between 21 to 30 kg be administered 2.5 mg and between 31 to 44 kg administered 4 mg. Children weighing 45kg or more should be administered the adult dose of 6 mg. Pegfilgrastim should not be administered less than 14 days after a cycle of chemotherapy. It should be administered more than 24 hours after a cycle of chemotherapy.

Adverse Effects

  1. Bone Pain: Bone pain is the commonest side effect with about 20-30% of the patients suffering the side effect.
  2. Rare but serous side effects include splenic rupture, acute respiratory distress syndrome,  precipitation of sickle cell crisis and capillary leak syndrome

Drugs and Eosinophilia


Drugs, prescription and non-prescription,  and nutritional supplements are a common cause of eosinophilia across the world. In regions with a low prevalence of parasitic infestations drugs are the leading cause of eosinophilia.

Clinical Spectrum of Drug Induced Eosinophilia

The spectrum of drug induced eosinophilia extends from an asymptomatic eosinophilia discovered on a routine haemogram to a a serious disorder like drug induced drug reaction with eosinophilia and systemic syndromes (DRESS). Eosinophilia associated with specific organ complications includes

  1. Eosinophilic pulmonary infiltrates associated with the use of sulfadsalazine, nitrofurantoin and non-steroidal anti-inflammatory drugs (NSAID)
  2. Acute interstitial nephritis with eosinophilia  associated with the use of semisynthetic penicillins, cephalosporins, NSAID, sulphonamides, phenytoin, cimetidine and allopurinol
  3. Eosinophilia-myalgia syndrome (EMS) presents with increased eosinophil counts associated with  severe myalgia, neuropathy, skin rash and multi-system complications. The cause of EMS is not known but L-tryptophan has been implemented.
  4. Drug reaction with eosinophilia and systemic symptoms /Drug induced hypersensitivity syndrome (DRESS/DIHS): The syndrome is a form of delayed drug hypersensitivity the presents with fever lymphadenopathy and end organ damage. The spectrum of end-organ damage includes hepetitis, interstitial nephritis, pneumonitis and carditis. The drugs implicated in DRESS/DIHS include
    1. Anti-infective
      1. Antibiotics: Cephalosporins, doxycycline, fluoroquinolone, linezolid, metronidazole, nitrofurantoin, penicillins, tetracycline
      2. Sulfomaides: Sulfasalazine trimethoprim-sulfamethoxozole
      3. Sulfones: Dapsone
      4. Antiviral: Abacavir, Nevirapine
    2. Anti-epileptic: Carbamazepine, lamotrigine, phenobarbital, phenytoin, , valproate
    3. Anti-depressants: Amitriptyline, desimipramine, fluoxetine
    4. Anti-inflammatory: Diclofenac, ibuprofen, naproxen, piroxicam
    5. Antihypertensives: ACE inhibitors, β-blockers, hydrochlorthiazide
    6. Others:  Allopurinol, cyclosporine, ranitidine

Management

The incriminating drug should be withdrawn in symptomatic patients. Asymptomatic eosinophilia does not necessitate discontinuation of therapy. If equally effective therapy is available it is preferable to stop therapy. If this is not the case the drug may be continued with careful monitoring for symptoms.

Sickle β-Thalassaemia


Sickle cell anaemia and β-thalassaemia are two common haemoglobinopathies. Co-inheritance of the two is called sickle β-thalassaemia. Sickle β-thalassaemia seen in Africa, throughout the  Mediterranean, Arabian Peninsula and sporadically in india. It has heterogeneous clinical presentation. The severity depends on the severity of the thalassaemia allele and the extent to which the impaired haemoglobin synthesis is compensated by foetal haemoglobin synthesis.

Pathophysiology

With a very few exceptions (Blood 1989; 74: 1817-22) the sickle cell and the thalassaemia gene are arranged in trans i.e on different chromosomes (βsthal). One allele is inherited from the mother and one from the father. One parent carries the a β-thalassaemia trait the other parent has a sickle cell disease that may be sickle cell anaemia, sickle β-thalassaemia or a trait. Sickle β-thalassaemia in Africa and India/Arabia is mild whereas the patients from the Mediterranean region have severe disease. As mentioned above the differences in severity have to do with severity of the β-thalassaemia and the degree to which the impaired haemoglobin A synthesis is compensated by HbF. Weatherall suggested that patients with HbA <15% follow a course similar to severe HbA and those with HbA 20-30% follow a mild course.

  1. African sickle β-thalassaemia: African patients have a mild β-thalassaemia resulting in a relatively higher HbA level and a lower risk of sickling. These patients run a mild clinical course.
  2. Arab/Indian sickle β-thalassaemia: Patients from India and the Arabian peninsula have a sickle cell haplotype that is associated with a high HbF production. The HbF retards sickling. High levels of HbF attenuate symptoms. Patients carrying this haplotype have mild symptoms even when the inherit a severe β- chain defect. Another reason of a mild phenotype in India is the interaction with α thalassaemia.
  3. Mediterranean sickle β-thalassaemia: Mediterranean patients usually inherit a severe form of  β-thalassaemia. These patients have severe sickling because there is very little HbA or HbF to offset inhibit the crystallisation of HbS. Despite only one chromosome carrying HbS the phenotype of these patients resembles sickle cell anaemia.

Clinical Picture of Sickle-β Thalassaemia

The features of sickle-β thalassaemia resemble those of other sickling disease. It is a chronic haemolytic anaemia the course of which is interrupted by acute exacerbations known as crisis. The manifestations include haemolytic anaemia, painful and other crisis, leg ulcers, priapism and complications of pregnancy. The severity of symptoms is variable. One end of the spectrum are patients, usually of origin Mediterranean descent, whose presentation is indistinguishable from sickle cell anaemia. These patients have inherit severe forms of β (β0) chain defects. Those with sickle cell-β+ thalassaemia have milder symptoms. These patients are typically of African ancestory. Unlike patients with sickle cell anaemia patients with sickle-β thalassaemia may have splenomegaly that is more prominent patients with sickle cell-β+ thalassaemia. The spleen is usually moderately enlarged but massive splenomegaly that may be associated hypersplenism neccesisating splenectomy has been reported. The effect of co-inheritance of α-thalassaemia is small. A decrease in the frequency of acute chest syndrome and leg ulcers and a higher persistence of splenomegaly is seen. Co-inheritance of α thalassemia is one of the reasons that sickle-β thalassaemia runs a milder course in India (the other being the high HbF due to the Arab-Indian haplotype of HbS).

Diagnosis

The haematological findings vary with severity. More severe phenotypes shows greater anaemia, lower MCHC, higher reticulocytes, HbF and HbA2. A variable number of sickle cells may be found. Unlike sickle cell anaemia both forms of sickle cell-β thalassaemia have an elevated HbA2. The distribution of HbA2 is very similar to heterozygous β thalassaemia. The levels of HbF are variable. High levels are found in patients with the Arab-Indian and Senegal haplotype of HbS.

Sickle cell-β0 thalassaemia needs to be differentiated from sickle cell anaemia. The presentation of both may be identical. However an offspring of a sickle cell-β0 thalassaemia patients and a carrier of β-thalassamia trait has a 25% risk of suffering from β-thalassaemia major. The offspring of a patients with sickle cell anaemia and a carrier of β thalassaemia trait does not carry the risk of β thalassaemia major. Though sickle cell-β0 thalassaemia is characterised by an elevated HbA2 and splenomegaly this can not be relied upon to differentiate between the two conditions. Family and DNA studies are needed. If the studies show one parent to be heterozygous for HbS and the other a carrier of β thalassaemia trait no further studies are needed. If any of the parent has a phenotype of sickle cell anaemia DNA studies may be the only way to make the diagnosis.

Sickle Cell β thalassaemia in cis

Almost all patients with sickle-β thalassaemia have the disorder in trans i.e. the one β globin gene is thalassaemic and the other has a the sickle mutation. Patients with HbS and thalassaemia gene in cis have been described. These patients have a mild hemolysis, HbA2 levels were 6%–7%, HbF approximately 3% and HbS of 10%–11%.

Treatment

The symptoms of sickle-β thalassaemia are due to sickling need to be treated accordingly.

Clinical Features of Megaloblastic Anaemia


Megaloblastic anaemia is a macrocytic anaemia resulting from the deficiency of vitamin B12 or folic acid characterised by the presence of megaloblasts in the bone marrow. It has haematological and neurological manifestations. The haematological manifestations are seen with folate as well as vitamin B12 deficiency. Folate deficiency in adults does not affect the nervous system.

Cobalamin deficiency is slow and “pure”. Folate deficiency is rapid and “impure”. Deficiecy of vitamin B12 occurs because of loss of intrinsic factor resulting in an isolated defect of B12 absorption. No other nutrients are affected. The body stores of B12 can last months. This results in B12 deficiency being a slow and “pure” deficiency. Symptoms come on slowly, over months. Folate deficiency evolves relatively quickly and is most commonly because of alcoholism or malabsorption. It is associated with other deficiencies and is rapid and “not pure”.

 

Manifestationf o megaloblastic anaemia

Figure 1. Clinical Manifestations of Megaloblastic Anaemia

Haematological Manifestations

Haematological changes resulting from vitamin B12 deficiency and folate deficiency are indistinguishable. Megaloblastic anaemias are macrocytic anaemia but macrocytosis is not specific to megaloblastic anaemia. It is however exceptional for other diseases characterised by macrocytosis to have an mean capsular volume (MCV) > 110fl.  This value can considered the threshold above which an anaemia is unlikely to be anything other than megaloblastic anaemia.

The earliest change in a megaloblastic anaemia is macrocytosis. This precedes changes in erythrocyte indices. Changes in mean capsular haemoglobin (MCH) follow and then the MCV rises. Haemoglobin usually falls after the MCV increases to >97 fl. As the severity of anaemia increases the peripheral smear shows aniscytosis and poikilocytosis, nucleated cells, Howell-Jolly bodies and Cabot’s ring. Microcytes and erythrocyte fragments that represent dyserythropoiesis may be seen. Polychromasia is absent and this distinguishes megaloblastic anaemia from haemolytic anaemia.

The term megaloblatic anaemia is a misnomer. The disease is actually a panmyelosis.  Erythroid, myeloid and megakaryocytic series are affected. Thrombocytopenia and leucopenia (neutropenia and to a lesser extent lymphopenia) usually occur late in the course. It is uncommon for patients with mild anaemia to have platelets and neutrophils but occasionally changes in leucocytes and/or platelets may dominate.

Iron deficiency or β-thalassaemia trait result in microcytosis and hypochromia and may incidentally co-exist with megaloblastic anaemia. Co-existence of either of these diseases with megaloblastic anaemia may mask macrocytosis of megaloblastic anaemia. Presence of hypersegmented neutrophils in a patients with normocytic normochromic anaemia should raise the suspicion of a megaloblastic anaemia co-existing with Iron deficiency or β-thalassaemia trait.

Neurological Manifestations

Cobalamine deficiceny causes neurological dysfunction. Folate deficiency causes symptoms only in children. Children with inborn errors of folate metabolism may have myelopathy, brain dysfunction and seizures.

The neurological manifestations of B12 deficiency are a result of a combination of upper motor neuron manifestations from subacute combined degeneration of the spinal cord, sensory and lower motor neuron manifestations from peripheral neuropathy and neurophychiatratic manifestations. Subacute combined degeneration of the spinal cord (SACD) is a degerative disease of the spinal cord involving the posterior and lateral column (corticospinal and spinoceribellar tracts) that starts in the cervical and the thoracic region.

The earliest neurological manifestations are impaired sense of vibration and position and symmetric dysesthasia that involve the lower limb. This is frequently associated with sensory ataxia. With progression spastic paraparesis develops. The patients have brisk knee reflexes, reflecting an upper motor neuron involvement and depressed ankle reflex, reflecting a peripheral neuropathy. Bladder involvement is unusual. Some patients may have optic atrophy.

Neuropsychiatric manifestation include memory loss, depression, hypomania, paranoid psychosis with auditory and visual hallucinations.

Other manifestations

Skin and nails can show pigmentations. Mucosa of the villi undergoes megalobkastic change resulting in temporary malabsorption.

Response to therapy

Haematological Recovery

  • Day 1: Feeling better
  • Day2-3: Reticulocytosis appears
  • Day 7-10: Peak retuculocytosis
  • Day 15 onwards: Neutrophilic hypersegmentation disappears
  • Day 56 (8 weeks): Blood counts become fully .normal

Neurological Recovery

Neurologic improvement begins within the first week also and is typically complete in 6 weeks to 3 months. Its course is not as predictable as hematologic response and may not be complete.

 

 

Evolution and Spread of HbS


The gene for β globin (OMIM  is present on chromosome 11 (11p15.4) along with other globin genes (ε, γ, γ and δ). This is known as the β-globin cluster . Individuals carrying identical genes on the β-globin gene cluster may not have identical DNA sequences in non-codeing regions of the DNA of the cluster. The non-coding regions include segments of DNA between genes and introns within genes. . Differences in DNA exist between individuals every 1000-2000 bases in the form of single nucleotide polymorphisms (SNPs). Single nucleotide polymorphisms are variations in a single nucleotide that occurs at a specific position in the genome. Many of these differences have no consequences on gene expression because either they do not result in change in amino acid sequence or they occur in regions of DNA that neither code for the gene nor regulate the gene. SNPs evolve by spontaneous mutations over time. The lesser the number of such differences between two individuals closer the individuals are the each other genetically (and in terms of evolution). Fewer differences in SNPs between individuals mean a more recent common ancestor.

One of the meanings of the word haplotype is a pattern of SNPs. A haplotype may be considered as a DNA “environment” in which the gene(s) occurs. This “environment” is created by the sequence of single nucleotide polymorphisms in which the gene(s) exists. As mentioned above differences in SNPs (and hence the “environment” the gene(s) exist in) evolve by spontaneous mutations over period of time. Fewer the differences between the “environments” the genes occurs in the more the likelihood that they come from related individuals.

HbS results from a single base substitution in the codon 6 of the β-globin gene. GAG becomes GTA resulting in substitution of valine for glutamate. This change results in a haemoglobin that crystallizes in hypoxic conditions resulting in a haemolytic anaemia. HbS occurs in diverse population groups including African, Mediterranean, Middle-Eastern and Indian. Is the haplotype of the HbS gene in these regions similar?

The HbS mutation occurs on five different haplotypes four African and one Arab-Indian. The mutation is the same (GAG to GTA on codon 6) but the SNPs are different. The haplotypes are

  1. Senegal: The Senegal HbS haplotype is found in Atlantic West Africa and Portugal
  2. Benin: The Benin HbS haplotype is found Central West Africa, Northern Africa and Mediterranean Europe (Greece, Sicily)
  3. Central African Republic or Bantu: The Central African Republic or Bantu is found in South Central and Eastern Africa
  4. Cameroon: The Cameroon haplotype is found in the Eton ethnic group of eastern Cameroon
  5. Arab-Indian: The Arab-Indian haplotype is the only non-African phenotype of HbS found in the eastern oasis of Saudi Arabia and India.

Origin of Haplotypes

There are two theories about the origin of haplotypes. The first, and the more accepted one, states that the five haplotypes arose from five independent mutations. An alternative hypothesis states that HbS mutation occurred only once and spread to other haplotypes by gene conversion.

 

Haplotypes and Severity of Symptoms

Symptoms of sickle cell anaemia are a consequence of crystallisation of haemoglobin under hypoxic conditions. HbF inhibits sickling. Patients with high HbF have fewer symptoms. The Arab-Indian and the Senegal haplotype are associated with higher HbF levels (17% and 12.4% respectively). In general patients carrying these haplotypes have milder symptoms than the Bantu or Benin haplotypes (Blood 2014; 123: 481)

 

Haplotypes and Human Migrations

Trade, conquests and human migrations (voluntary and slave trade) have disseminated the African haplotypes beyond Africa.

  1. The Mediterranean: Most of the Mediterranean (Greece and Scilly) has the Benin haplotype. This reflects pre-historic migrations from Central West Africa along the then fertile Sahara to North Africa. From here it spread to the Mediterranean via the interactions (Trade and wars) between the two regions. The only exception is Portugal. Portugal has the Senegal haplotype which reflects the trading contacts between Portugal and Atlantic West Africa (Angola and Mozambique).
  2. Americas: Neither the native americans nor the original European settlers to the Americas carried the HbS gene. HbS was imported to the Americas with the slaves from Africa. Jamaica was an important slave import hub and records for where tthe slaves arrived from are available. Jamaica has 73% Benin haplotype, 17% Bantu and 10% Senegal haplotypes. These numbers are close to the actual number of slaves who arrived in Jamaica from regions of Africa where these haplotypes are prevalent. Similarly the distribution of haplotype correspond to the origins of slaves in Baltimore and South Carolina (Mariam Bloom. Understanding Sickle Cell Disease, Page 34).
  3. Arab or Indian: It is not clear if the Arab-Indian haplotype originated in India or Saudi Arabia. But considering that all of tribal India has only one haplotype but the East and West Arabian Peninsula have different haplotypes it is possible that the haplotype originated in India.
  4. Spread to Other Parts: As opposed to the era of slave trade modern migration of people in the recent past have been voluntary. These populations have spread across the world as have those form mediterranean but to a lesser extent. These migrations have introduced the HbS gene in areas where it was not indigenous.

 

Heterozygous β-Thalassaemia 


β-Thalassaemia is an inherited disease characterised by an imbalance between production of α and β globin chains of haemoglobin resulting from impaired production of β chains. The genes responsible for β-thalassaemia carry mutations in areas coding for the β globin gene or regions regulating the expression of this gene. Patients who are homozygous of compound heterozygous for the gene are symptomatic. They manifest as thalassaemia major. Thalassaemia major is a fatal illness where patients suffer the consequences of anaemia, bone marrow hyperplasia and iron overload. Iron overload that results from increased iron absorption and repeated transfusion is the cause of death. The treatment consists of lifelong transfusion with iron chelation or in those who have a matched donor, allogeneic bone marrow transplantation.

Thalassaemia Inheritance

The risk of inheritance of β-thalassaemia in offsprings when both parents are heterozygous is shown on the left. There is a 25% risk of thalassaemia major, 50% risk of heterozygous β-thalassaemia and 25% of the offsprings will be normal. If one of the parents does not carry the thalassaemia gene there is a 50% risk of the offspring carrying heterozygous β-thalassaemia and 50% of the offsprings will be normal.

As opposed to homologous or compound heterozygous β-thalassaemia, heterozygous the β-thalassaemia is asymptomatic. The condition is also known as β-thalassaemia minor (see classification of β-thalassaemia). The terminology reflecting the asymptomatic nature of the disease. Though β-thalassaemia is an asymptomatic disease the diagnosis has clinical implications. These include:

  1. Risk of β-thalassaemia in children: β-Thalassaemia major is inherited in an autosomal recessive manner. If both the parents are heterozygous for β-thalassaemia there is a 25% risk of the child suffering from thalassaemia major (see figure above, left). The most effective way to prevent β-thalassaemia major is to ensure that at least one parents does not carry the β-thalassaemia gene (see figure above, right). Diagnosis of an index case of heterozygous β-thalassaemia should initiate a search for all individuals carrying the β-thalassaemia gene in the family. Patients with heterozygous β-thalassaemia should be discouraged from choosing another heterozygous β-thalassaemia as a life partner. Those who make this choice despite counselling or those who already married should be explained the importance of prenatal diagnosis of β-thalassaemia major on conception and encouraged to undergo the same.
  2. Prevention of unnecessary iron therapy: Iron deficiency anaemia, like thalassaemia, is microcytic and hypochromic. Iron therapy alleviates the anaemia of thalassaemia only if iron deficiency co-exists. Iron therapy is associated with gastrointestinal adverse effects. Some patients with heterozygous β-thalassaemia have increased iron absorption and there have been reports of iron overload in β-thalassaemia trait (Br J Haematol). Diagnosis of heterozygous β-thalassaemia spares the patient unnecessary and sometimes dangerous iron therapy.

Pathophysiology of Heterozygous β-Thalassaemia

Heterozygous β-thalassaemia minor is characterised by an imbalance between the α and β globin chains because of decreased production of β-chains. The clinical manifestations of thalassaemia depend on the degree on imbalance between α chains and non-α (β+γ) chains. Thalassaemia minor, the phenotype of heterozygous β-thalassaemia results when the ratio of α to non-α chains is 2:1 (Cold Spring Harb Perspect Med 2012;2:a011726).

Clinical Features

Patients of heterozygous thalassaemia are asymptomatic. The clinical presentations is that of thalassaemia minor. Diagnosis is usually made incidentally when

  1. A haemogram is performed for another reason or
  2. Screening is performed following detection of a β-thalassaemia patient in the family
  3. Evaluation of anaemia of pregnancy

Though traditionally heterozygous β-thalassaemia are considered to be asymptomatic recent studies have found these patients to have symptoms of mild anaemia. Heterozygous β-thalassaemia may become symptomatic

  1. In pregnancy:The third trimester of pregnancy sees a plasma volume expansion accompanied by an increased production of red cells. In normal women the volume expansion is more than the increase in the number of red cells. Women become anaemic in the third trimester as a result of this discrepancy. Patients with β-thalassaemia trait show a plasma volume expansion but are not able to increase the number of red cells like normal women do. As a consequence women with heterozygous β-thalassaemia become more anaemic than normal women. This anaemia is usually mild and haemoglobin values lower than 8-9g/dL should prompt a search for another cause of anaemia. Iron deficiency anaemia is the commonest anaemia in pregnancy and it mimics thalassaemia. Serum iron and iron binding capacity may not be reliable in pregnancy and a serum ferritin must be performed for diagnosing iron deficiency.
  2. In case of autosomal dominant β-thalassaemia: Some forms of deletion β-thalassaemia result in the formation of an unstable β chain that forms inclusions. These inclusions cause ineffective erythropoietin and a thalassaemia like syndrome. Such patients are said to have a dominant β-thalassaemia and have the clinical picture of thalassaemia intermedia even when heterozygous.
  3. If the co-inherit an overdose of α thalassaemia genes: Manifestations of β-thalassaemia depend on the ratio of α to non-α chains. Thalassaemia minor results when the ration is 1.5-2.5:1 and intermedia when the ratio is about 4:1. Thalassaemia major is seen with higher rations. Some patients have three or even four α globin genes (ααα or αααα). These patients produce more α globin chains. Increase in α chains can push up the ratio of α to non-α chains and result in manifestations of thalassaemia intermedia in heterozygous β-thalassaemia. Similarly co-inheritance of α and β thalassaemias can attenuate the manifestations of thalassaemia.

Laboratory Features

  1. Haemogram: Heterozygous β-thalassaemia is characterised by anaemia, low MCH and low MCV. The MCHC is usually normal. The erythrocytes count is high and there may be a slight increase in the reticulocyte count. The peripheral smear shows microcytosis, hypochromia, poikilocytosis, basophilic strippling and target cells. Co-inheritance of α-thalassaemia attenuates the findings. The red cell indices are normal at birth. Changes associated with heterozygous β-thalassaemia become apparent by 3 months. By 6 months thalassaemic changes are firmly established.
  2. Haemoglobin A2: Haemoglobin A2 (HbA2) is in the range of 3.5-7%. Iron deficiency causes a disproportionate fall in HbA2 in patients with heterozygous β-thalassaemia but does not push the HbA2 levels in the normal range. Heterozygous β-thalassaemia with normal HbA2 is discussed below.
  3. Bone Marrow: The bone marrow shows erythroid hyperplasia with pyknotic normoblasts dominating. There is ineffective erythropoiesis mainly due to destruction of haemoglobinized precursors. Studies have shown approximately 25% decrease in efficiency of erythropoiesis.
  4. Iron Metabolism: Rate of iron absorption is slightly increased. Some cases of iron overload have been reported. Iron deficiency may co-exist the heterozygous β-thalassaemia particularly in pregnancy. Serum ferritin estimations should be performed to diagnose iron deficiency.
  5. Osmotic Fragility: Osmotic fragility is increased particularly after 24 hours of sterile incubation of erhthrocytes. It has been suggested that this be used as a screening test for heterozygous β-thalassaemia but has not gained widespread acceptability.
  6. Globin Chain Synthesis: Heterozygous β-thalassaemia is associated with a α:β ratio of 1.5-2.5:1.

Genotype Phenotype Co-relations

There is a continuous spectrum of changes with mild alleles having less pronounced effect on haematological parameters. Severe alleles have higher HbA2 values. Mild thalassaemia with high HbA2 suggest a promoter mutation.

Interaction between Heterozygous β-thalassaemia and other Haemoglobinopathies

Heterozygous β-thalassaemia is a common disorder and a chance associations may be seen with other haemoglobinopathies or inherited disorders of erythrocytes. Fortunately no deleterious association has been found with most disorders these include glucose-6-phosphate dehydrogenase deficiency, hereditary spherocytosis  and pyruvate kinase deficiency.

α-Thalassaemia

α-Thalasaemia tends to reduce the α:β globin ratio. The amount of free α globin chain reduces attenuating the manifestations of heterozygous β-thalassaemia.

Sickle Cell Disease

β-Thalassaemia and sickle-cell diseases are common genetic diseases. Co-inheritance of the two is found in Africa, Mediterranean and sporadically through India. The symptoms depend on the relative amounts of HbS and HbA. HbA polymerises less than HbS. High levels of HbA reduce symptoms of sickling.  HbF is excluded from and protects against sickling. The clinical manifestations of patients co-inhereting sickle-cell and β-thalassaemia depend on the type of thalassaemia allele inherited and the HbF levels.

  1. Sickle β-thalassaemia with β0 or severe β+ alleles: Mediterranean forms of β-thalassaemia trait are either β0 severe β+. Patients from this region have severe sickling symptoms and HbA levels <15%.
  2. Sickle β-thalassaemia with mild β+ alleles: African patients of sickle β-thalassaemia inherit mild β+ alleles.  These patients have haemoglobin levels in the range of 20-30%  and mild symptoms . Many do not have symptoms. Diagnosis in some may be made incidentally.
  3. Sickle β-thalassaemia with high HbF: Patients from Indian and Saudi Arabia have mild symptoms despite inheriting severe β alleles because of high levels of HbF.

Treatment of Heterozygous β-Thalassaemia

Heterozygous β-thalassaemia does not need any treatment. A family screening should be carried out to detect other members carrying the thalassaemic β globin gene. Iron therapy should not be administered to patients empirically. Some patient have an increase iron absorption and iron overload has been reported. Iron studies should guide iron therapy. Anaemia can worsen during pregnancy. Folate and iron supplementation may be needed.

 

 

Calreticulin and Myeloproliferative Disease


Myeloproliferative disorders (polycythaemia vera [PV], essential thrombocytosis [ET], progressive myelofibrosis [PMF]) are a group of diseases that are characterised by increased proliferation of blood cells, splenomegaly, myelofibrosis, thrombosis and risk of malignant transformation.  The year 2005 was a landmark year for myeloproliferative diseases. Four groups of scientists identified the presence of JAK2V617F mutations in PV. This mutation is present in about 98% patients with PV. Mutations of exon 12 of the JAK2 gene can be found in 1-2% of the PV. These patients do not show the JAK2V617F mutation. The discovery of these mutations gave a genetic definition PV making diagnosis objective.

PV is diagnosed by the presence primary erythrocytosis in the precession of a JAK2 mutation referred to above. Chronic myeloid leukaemia is diagnosed by demonstrating the BCR-ABL1 translocation. JAK2V617F is also present in 50-60% of ET and PMF. Mutation of the gene MPL is found in 1-2%  patients of ET and 5-10% of the patients with PMF. The presence of these mutation helps make diagnosis. However, The diagnosis of PMF and ET in a large proportion of patients requires exclusion of a reactive disorder and other myeloproliferative diseases because these patients (38-49% of ET and 30-45% of PMF) have no genetic marker.

Two publications have shown that a large proportion of the patients with ET and PMF who do not have JAK have mutation calreticulin (CALR) (N Engl J Med. 2013;369(25):2391-2405,  N Engl J Med. 2013;369(25):2379-2390). In addition to ET and PMF CALR mutations are found in the MDS/MPN overlap disorder and refractory anemia with ring sideroblasts with thrombocytosis (RARS-T). They are rare or absent in other myeloid or lymphoid neoplasms or solid tumors.

Calreticulin (CALR) is a major calcium binding protein. The gene for calreticulin is located on 19p13.2. About a quarter of ET and MF have mutation in the CALR gene. All CALR mutations are localised to exon 9 and generate a 1bp frameshift. As a result of this most or almost all the C terminal negative amino acids and calcium binding sites are lost.  There is a complete loss of the KDEL endoplasmic reticulum binding sequence. These mutations have been identified in the haemopoietic stem cell and progenitor compartments. CALR mutations and JAK2 mutations are mutually exclusive.

CALR mutated myeloproliferative disease have a distinct clinical profile. These patients have a lower haemoglobin, lower leukocyte count, higher platelet count and a lower risk of thrombosis. Patients of PMF carrying a CALR mutation have a longer survival than those carrying JAK2 or MPL mutations. Patients with ET carrying the CALR mutations have a longer survival than those carrying the JALK2 mutation. There is no difference between the survival of ET patients carrying CALR mutations and MPL mutations.

Mutated CALR appears to stimulate STAT pathway. It appears to physically bind with the thrombopoietin receptor to stimulate STAT. The erythropoietin receptor is not needed for this action (Blood. 2015;10.1182/blood-2015-11-681932Blood. 2015;126:LBA-4).