Lymphocytosis in Adults


Normal Peripheral Blood Lymphocytes

Lymphocytes are small leucocytes with a round nucleus and a thin rim of cytoplasm. About 10% of the peripheral lymphocytes are large, have a more abundant cytoplasm that has granules. These are called large granular lymphocytes (LGL). About 85% of the peripheral blood lymphocytes are T lymphocytes. The remaining are B lymphocytes and NK cells with B lymphocytes dominating.

Lymphocytosis is increase in the lymphocyte counts to what is normal for age. Lymphocyte count is highest at birth and falls with age. Normal lymphocyte counts in adults is 1000 to 4800 cells/mm3.

Causes of Lymphocytosis

Lymphocytosis may be reactive (see table below) or due to a malignancy. Reactive lymphocytosis is polyclonal. Lymphocytosis due to malignancy is monoclonal. The most common cause of reactive lymphocytosis is infectious mononucleosis due to Epstein-Barr virus infection. Reactive lymphocytosis may be seen in other viral infections, drug hypersensitivity, thymoma and after splenectomy. Persistent polyclonal B cell lymphocytosis is a condition found in middle aged women who smoke.

Monoclonal B cell lymphocytosis and chronic lymphocytic leukaemia are the commonest causes of primary lymphocytosis.

Causes of Lymphocytosis
Reactive lymphocytosis (reactive lymphocytes unless mentioned otherwise)

  1. Infections
    1. Viral: Infectious mononucleosis (EBV), Adenovirus, CMV, Coxsackie virus, Hepatitis, Acute HIV infection, Human T-lymphotropic virus type I, Influenza, Measles, Mumps, Poliovirus, Rubella
    2. Bacterial: Pertussis, Cat scratch disease and other chronic bacterial infections
    3. Parasitic: Toxoplasmosis
  2. Drug hypersensitivity reactions
  3. Stress (normal looking lymphocytes)
  4. Persistent polyclonal B cell lymphocytosis (lymphocytes have a distinct nuclear cleft)
  5. Post-splenectomy  (normal looking lymphocytes)
  6. Thymoma  (normal looking lymphocytes)
  7. Hyperreactive malarial splenomegaly  (normal looking lymphocytes)

Primary Lymphocytosis

  1. B Lymphocytic
    1. Monoclonal B cell lymphocytosis
    2. Chronic lymphocytic leukemia
    3. B-Prolympocytic leukaemia
  2. Leukaemia Phase of non-Hodgkin lymphoma (common
    1. B cell Follicular lymphoma
    2. Mantle cell lymphoma
    3. Splenic marginal zone lymphoma
    4. Lymphoplasmacytic lymphoma
  3. T Cell Lymphoma
    1. Prolymphocytic leukaemia
    2. Sezary cell leukaemia
    3. Adult T-cell leukaemia/lymphoma
    4. Large Granular cell leukaemia
  4. Acute lymphoblastic leukemia

Clinical Profile of Patients with Lymphocytosis

Infectious Mononucleosis: Infectious mononucleosis (IM) is a self limiting disease of adolescents that presents with prodrome of fatigue, myalgia lasting 1-2 followed by fever pharyngitis and lymphadenopathy, splenomegaly, hepatomegaly and rash. The peripheral smear shows lymphocytosis with atypical lymphocytes. These are irregular, have slightly larger nuclei, a more open chromatin and abundant cytoplasm. Some cells may appear blastoid. Atypical lymphocytes are predominantly CD8+. Differentiation from lymphocytosis of malignancy is made by

  1. Clinical Picture: Patients with IM have fever, malaise, pharyngitis and other features of IM.
  2. Morphology of Lymphocytes: Reactive lymphocytes of IM show variations in size and morphology. Cells from patients with malignant lymphocytoisis are more uniform.

Other infection: Atypical lymphocytosis is a feature of other infections listed in the table above. Typical features of the causative infection may or may not be present. CMV associated mononucleosis syndrome is indistinguishable from IM. Lobulated lymphocytes are a feature of human T-lymphotropic virus type I (HTLV-I ) infection.

Lympocytosis with B pertussis: Pertusis caused by Bordetella pertussis with upper respiratory symptoms that evolves into a paroxysmal cough in about 1-2 weeks. Pertusis is an exception amongst acute respiratory infections in that it causes lymphocytosis rather than neutrophilic leucocytosis. Unlike other viral infections lymphocytes of pertussis are small and have cleaved nucleus.

Stress Lymphocytosis: Stress has been associated with an increased lymphocyte count. Counts may range 4,000 to 10,400/mm3. All subsets of lymphocytes increase. The counts normalises after the stressful event passes (Am J Clin Pathol. 2002 May;117(5):819-25).

Persistant Polyclonal B cell lymphocytosis: Persistent polyclonal B cell lymphocytosis is seen in young to middle-aged women who are smokers. The patients show the presence of large binucleate lymphocytes. There is polyclonal increase in IgM in the serum. The patients do not have lymphadenopathy and splenomegaly.

Splenectomy: Lymphocytoisis that persists has been reported in patients who have undergone splenectomy (Clin Lab Haematol. 1995 Dec;17(4):335-7).

Thymoma: Paraneoplastic T cell lymphocytoss may rarely be seen in patients with thymoma. The patients present with a mediastinal mass and lymphjocytiosis. They need to be differentiated from T Lymphoblastic leukaemia who can present with mediastinal mass with lymphoblasts (Ann Oncol 2007; 18:603-604).

Hyperreactive malarial splenomegaly: Hyperreactive malarial splenomegaly is seen in residents of malarious areas. It presents with left upper quadrant pain, fatigue and dyspnoea. The patients have a massive spleen. The haemogram shows anaemia, leucopenia and thrombocytopenia. Some patients may have lymphocytosis.

Monoclonal B cell lymphnocytosis: Monoclonal B cell lymphocytosis is a premalignant condition that has a risk of progressing to chronic lymphocytic leukaemia. It it is diagnosed in a patients with lymphocyte count <5000/mm3 without any other evidence of lymphproliferative disease. The morphology and phenotype of the cells is identical to that of chronic lymphocytic leukaemia. Patients are asymptomatic and the disorder is detected incidentally on a haemogram performed for another reason.

Chronic lymphocytic Leukarmia (CLL)/small lymphatic leukaemia: Chronic lymphocytic leukaemia is the leukaemia phase of small lymphocytic lymphoma. Patients with CLL have lymphocytosis with normal looking lymphocytes. A few prolymphocytes may bee seen. If the percentage of prolympocytes is greater then 55% a diagnosis of prolymphocytic leukaemia should be made. The cells express CD19, CD20(usually weak), CD23 and the T cell marker CD5. Patients may have lymphadenopathy, splenomegaly and hepatomegaly. Anaemia and/or thrombocytopenia may co-exist, some of which may be due to autoimmunity.

Prolymphocytic Leukaemia: Prolymphocytic leukaemia is a misnomer. The malignant cell is actually a activated mature lymphocytes. Prolympnocytic leukaemia may be of B cell or T cell type. The cells are twice the size of a normal lymphocyte. The nucleus is round with a moderately condensed cytoplasm. A prominent central nucleolus is present. The cytoplasm is faintly basophilic. Morphiology of T Prolymphocytic leukaemia is similar. Patients present with a high count (usually > 100X109/L), massive splenomegaly in the absence of lymphadenopathy. T PLL may show skin infiltration in 20% of the cases. They may also show serous effusions.

Peripheral blood involvement with non-Hodgkin Lymphoma: Peripheral blood involvement with non-Hodgkin Lymphoma presents with mononucleated cells. Morphological features may  suggest the type of lymphoma. These include villous lymphocytes of splenic marginal zone lymphoma and atypical hairy cell leukaemia, cells with cribriform nuclei in Sézary syndrome plasmacytoiod lymphocytes of lymphplasmacytic lymphoma and lobulated lymphocytes in adult T-cell leukaemia/lymphoma. 

Large Granular Cell Leukaemia: LGL leukaemia is characterised by a count of 2-10X109/L. The cell are large granular lymphocytes with abundant cytoplasm and fine and coarse azurophilic granules. 

 

Advertisements

Bendamustine


Bendamustine is a mechlorethamine derivative synthesised by Ozegowski and Krebs from the former East Germany in 1963. The  molecule has three parts,

  1. The alkylator mechloethamine,
  2. Benzimidazole ring that mimics purines
  3. Butyric acid side chain.

Each of these part has potential anti-malignacy action but only the alkylating actions are of clinical significance.

Mechanism of Action

Bendamustine acts as a classical chlorethyl alkylating agent. It causes inter and intrastrand DNA cross links that result in DNA strand breaks. The number of DNA strand breaks caused by bendamustine is grater than those caused by cyclophosphamide or melphalan. In addition the breaks are repaired slowly. This is probably because of the bulky structure of bendamustine. It has a partial cross sensitivity against other alkylating agents.

The benzimidazole side chain mimics purines and butyric acid side chain can react with membranes and proteins.  These actions do not contribute to the anti-tumour effect of bendamustine.

Mechanisms of Resistance

Resistance to bendaustime may develop because  of

Increased activity of DNA repair enzymes

Increased expression of sulfhydryl proteins, e.g. glutathione and glutathione-related enzymes

Bendamustine is partially cross-resistance with other alkylators.

Pharmacokinetics

  1. Absorption and Distribution: Bendamustine has a high oral bioavailability of 90% but no oral preparation is available. It is tightly (94%-96%) bound to human serum plasma proteins. Protein binding is not affected by hypoalbuminaemia.  It does not appear to displace other drugs or be displaced by other drugs. It is mainly distributed in the extracellular space and has a steady state volume of distribution of 25 L.
  2. Elimination: It is metabolised by hydrolysis. Active metabolites are formed as a result of drugs metabolism but theses have little clinical significance.  The half-life after a 30 minute infusion is 40 minutes with clearance of 700ml/min.
  3. Effect of Renal Impairment: Renal impairment with creatinine clearance unto 40 ml/min does not affect the elimination of bendamiustine. The effect of more severe renal failure is not studied.
  4. Effect of Hepatic Impairment: Mild Hepatic impairment does not have an effect on bendamustine elimination. The effect of moderate and severe liver impairment is unknown.

Toxicity

  1. Myelosupression: The main toxicity is myelosupression with about half the patients having grade 3 or 4 neutropenia. The incidence of febrile neutropenia is about 7%. Grade 3  to 4 thromboctopenia is about 24%. Anaemia is less common.
  2. Nausea and vomiting is usually mild to moderate
  3. Infusion reactions: infusion reaction is characterised by fevers, hypotension, back and muscle pain, chills, and rigours and may be seen within the 24 hours of infusion. It may be seen unto the third cycle. Steroids may help in patients getting infection reactions.
  4. Skin Toxicity: Skin rash and bullous exanthema
  5. Tumour lysis syndrome
  6. Carcinogenicity: Bendamustine has been associated with myelodysplastic syndrome and acute leukaemia.

Indications

  1. Chronic Lymphocytic leukaemia
  2. Low grade non-Hodgkin lymphoma
  3. Other disease wherebendamustine is used but the role is not established:
    1. Multiple Myeloma
    2. Acute Leukaemia
    3. Solid Tumours – breast cancer, small cell lung cancer, germ cell tumour

Dose

  1. Chronic Lymphocytic leukaemia:
    1. Single Agent: 100mg/m2 day 1 and 2 every 4 weeks
    2. With rituximab: 90mg/m2 day 1 and 2 when used with rituximab
  2. Non-Hodgkin Lymphoma:
    1. Single Agent: 120mg/m2 day 1 day 2 of a 21 day cycle.
    2. With Rituximab:  90mg/m2 o day 1 and day 2 of a 28 day cycle

Dosing in Special Populations

  1. Pregnancy:  Bendamustine is mutagenic.
  2. Paediatric Patients: Safety of bendamustine in paediatric population is not established
  3. Renal Failure: Bendamustine should not be used in patients with creatine clearance of less than 40ml/min
  4. Hepatic failure: Bendamustine should not be used in patients with moderate or severe hepatic impairment (bilirubin >3 X upper limit of normal or bilirubin 1.5-3 X upper limit of normal with AST or ALT 2.5-10X normal)

 

Leukaemia – The Peripheral Smear


Differentiating Acute and Chronic Leukaemia

Leucocytosis with anaemia is a feature of acute and chronic leukaemia. It is possible to differentiate acute and chronic leukaemia by looking at the peripheral smear. Patients with acute leukaemia often have thrombocytopenia. Patients with chronic lymphocytic leukaemia may have normal or low platelet counts. Patients with chronic myeloid leukaemia have normal or high platelet counts.

Haemoglobin Platelets Peripheral Smear
Acute Leukaemia Low Low Immature forms other than blasts not seen
Chronic Lymphocytic Leukaemia Low or Normal Low or Normal Normal looking lymphocytes
Chronic Myeloid Leukaemia Low or Normal Normal or High Immature leucocytes, all phases of leucocyte maturation seen

The phases of maturation of myeloid cells (from the least to the msot mature) are blasts, promyelocytes, myelocytes, metamyelocytes, band form and mature granulocyte (see Myeloid Precursors Morphlogy). The peripheral smear from patients with acute leukaemia shows blasts (or promyelocytes) and mature neutrophils. Very few cells, if any, with maturity between the two stages that occupy two ends of the spectrum are seen. Patients with with chronic myeloid leukaemia have cells with all stages of maturity between blasts and mature granulocytes. The peripheral smear in patients with acute leukaemia shows mature lymphocytes.

The explanation for the different peripheral smear findings in acute leukaemia and chronic myeloid leukaemia is in the pathogenesis of the two diseases. Chronic myeloid is a myeloprolferative disease. It is a clonal disease. The stem cells of patients with chronic myeloid leukaemia carry the BCR-ABL mutation. This mutation results in clonal expansion. All blood cells in a patient arise from one clone. The release of cells from the bone marrow of patients with CML is not limited to mature granulocytes. Some cells leave the marrow and result in leucocytosis.

The marrow of a patient of acute leukaemia has two clone one malignant one normal. The malignant clone can not differentiate beyond the stage of a blast (or promyelocyte). It slowly effaces the normal clone. The mature granulocytes seen in the peripheral smear arise from the normal clone and the blasts from the malignant clone. The normal clone releases cells only when they mature to the stage of band cell or beyond. The malignant clone can not mature beyond the stage of a blast. The stages between blasts and band forms/mature granulocytes are not seen in peripheral smear of acute leukaemia.