Sickle β-Thalassaemia


Sickle cell anaemia and β-thalassaemia are two common haemoglobinopathies. Co-inheritance of the two is called sickle β-thalassaemia. Sickle β-thalassaemia seen in Africa, throughout the  Mediterranean, Arabian Peninsula and sporadically in india. It has heterogeneous clinical presentation. The severity depends on the severity of the thalassaemia allele and the extent to which the impaired haemoglobin synthesis is compensated by foetal haemoglobin synthesis.

Pathophysiology

With a very few exceptions (Blood 1989; 74: 1817-22) the sickle cell and the thalassaemia gene are arranged in trans i.e on different chromosomes (βsthal). One allele is inherited from the mother and one from the father. One parent carries the a β-thalassaemia trait the other parent has a sickle cell disease that may be sickle cell anaemia, sickle β-thalassaemia or a trait. Sickle β-thalassaemia in Africa and India/Arabia is mild whereas the patients from the Mediterranean region have severe disease. As mentioned above the differences in severity have to do with severity of the β-thalassaemia and the degree to which the impaired haemoglobin A synthesis is compensated by HbF. Weatherall suggested that patients with HbA <15% follow a course similar to severe HbA and those with HbA 20-30% follow a mild course.

  1. African sickle β-thalassaemia: African patients have a mild β-thalassaemia resulting in a relatively higher HbA level and a lower risk of sickling. These patients run a mild clinical course.
  2. Arab/Indian sickle β-thalassaemia: Patients from India and the Arabian peninsula have a sickle cell haplotype that is associated with a high HbF production. The HbF retards sickling. High levels of HbF attenuate symptoms. Patients carrying this haplotype have mild symptoms even when the inherit a severe β- chain defect. Another reason of a mild phenotype in India is the interaction with α thalassaemia.
  3. Mediterranean sickle β-thalassaemia: Mediterranean patients usually inherit a severe form of  β-thalassaemia. These patients have severe sickling because there is very little HbA or HbF to offset inhibit the crystallisation of HbS. Despite only one chromosome carrying HbS the phenotype of these patients resembles sickle cell anaemia.

Clinical Picture of Sickle-β Thalassaemia

The features of sickle-β thalassaemia resemble those of other sickling disease. It is a chronic haemolytic anaemia the course of which is interrupted by acute exacerbations known as crisis. The manifestations include haemolytic anaemia, painful and other crisis, leg ulcers, priapism and complications of pregnancy. The severity of symptoms is variable. One end of the spectrum are patients, usually of origin Mediterranean descent, whose presentation is indistinguishable from sickle cell anaemia. These patients have inherit severe forms of β (β0) chain defects. Those with sickle cell-β+ thalassaemia have milder symptoms. These patients are typically of African ancestory. Unlike patients with sickle cell anaemia patients with sickle-β thalassaemia may have splenomegaly that is more prominent patients with sickle cell-β+ thalassaemia. The spleen is usually moderately enlarged but massive splenomegaly that may be associated hypersplenism neccesisating splenectomy has been reported. The effect of co-inheritance of α-thalassaemia is small. A decrease in the frequency of acute chest syndrome and leg ulcers and a higher persistence of splenomegaly is seen. Co-inheritance of α thalassemia is one of the reasons that sickle-β thalassaemia runs a milder course in India (the other being the high HbF due to the Arab-Indian haplotype of HbS).

Diagnosis

The haematological findings vary with severity. More severe phenotypes shows greater anaemia, lower MCHC, higher reticulocytes, HbF and HbA2. A variable number of sickle cells may be found. Unlike sickle cell anaemia both forms of sickle cell-β thalassaemia have an elevated HbA2. The distribution of HbA2 is very similar to heterozygous β thalassaemia. The levels of HbF are variable. High levels are found in patients with the Arab-Indian and Senegal haplotype of HbS.

Sickle cell-β0 thalassaemia needs to be differentiated from sickle cell anaemia. The presentation of both may be identical. However an offspring of a sickle cell-β0 thalassaemia patients and a carrier of β-thalassamia trait has a 25% risk of suffering from β-thalassaemia major. The offspring of a patients with sickle cell anaemia and a carrier of β thalassaemia trait does not carry the risk of β thalassaemia major. Though sickle cell-β0 thalassaemia is characterised by an elevated HbA2 and splenomegaly this can not be relied upon to differentiate between the two conditions. Family and DNA studies are needed. If the studies show one parent to be heterozygous for HbS and the other a carrier of β thalassaemia trait no further studies are needed. If any of the parent has a phenotype of sickle cell anaemia DNA studies may be the only way to make the diagnosis.

Sickle Cell β thalassaemia in cis

Almost all patients with sickle-β thalassaemia have the disorder in trans i.e. the one β globin gene is thalassaemic and the other has a the sickle mutation. Patients with HbS and thalassaemia gene in cis have been described. These patients have a mild hemolysis, HbA2 levels were 6%–7%, HbF approximately 3% and HbS of 10%–11%.

Treatment

The symptoms of sickle-β thalassaemia are due to sickling need to be treated accordingly.

Evolution and Spread of HbS


The gene for β globin (OMIM  is present on chromosome 11 (11p15.4) along with other globin genes (ε, γ, γ and δ). This is known as the β-globin cluster . Individuals carrying identical genes on the β-globin gene cluster may not have identical DNA sequences in non-codeing regions of the DNA of the cluster. The non-coding regions include segments of DNA between genes and introns within genes. . Differences in DNA exist between individuals every 1000-2000 bases in the form of single nucleotide polymorphisms (SNPs). Single nucleotide polymorphisms are variations in a single nucleotide that occurs at a specific position in the genome. Many of these differences have no consequences on gene expression because either they do not result in change in amino acid sequence or they occur in regions of DNA that neither code for the gene nor regulate the gene. SNPs evolve by spontaneous mutations over time. The lesser the number of such differences between two individuals closer the individuals are the each other genetically (and in terms of evolution). Fewer differences in SNPs between individuals mean a more recent common ancestor.

One of the meanings of the word haplotype is a pattern of SNPs. A haplotype may be considered as a DNA “environment” in which the gene(s) occurs. This “environment” is created by the sequence of single nucleotide polymorphisms in which the gene(s) exists. As mentioned above differences in SNPs (and hence the “environment” the gene(s) exist in) evolve by spontaneous mutations over period of time. Fewer the differences between the “environments” the genes occurs in the more the likelihood that they come from related individuals.

HbS results from a single base substitution in the codon 6 of the β-globin gene. GAG becomes GTA resulting in substitution of valine for glutamate. This change results in a haemoglobin that crystallizes in hypoxic conditions resulting in a haemolytic anaemia. HbS occurs in diverse population groups including African, Mediterranean, Middle-Eastern and Indian. Is the haplotype of the HbS gene in these regions similar?

The HbS mutation occurs on five different haplotypes four African and one Arab-Indian. The mutation is the same (GAG to GTA on codon 6) but the SNPs are different. The haplotypes are

  1. Senegal: The Senegal HbS haplotype is found in Atlantic West Africa and Portugal
  2. Benin: The Benin HbS haplotype is found Central West Africa, Northern Africa and Mediterranean Europe (Greece, Sicily)
  3. Central African Republic or Bantu: The Central African Republic or Bantu is found in South Central and Eastern Africa
  4. Cameroon: The Cameroon haplotype is found in the Eton ethnic group of eastern Cameroon
  5. Arab-Indian: The Arab-Indian haplotype is the only non-African phenotype of HbS found in the eastern oasis of Saudi Arabia and India.

Origin of Haplotypes

There are two theories about the origin of haplotypes. The first, and the more accepted one, states that the five haplotypes arose from five independent mutations. An alternative hypothesis states that HbS mutation occurred only once and spread to other haplotypes by gene conversion.

 

Haplotypes and Severity of Symptoms

Symptoms of sickle cell anaemia are a consequence of crystallisation of haemoglobin under hypoxic conditions. HbF inhibits sickling. Patients with high HbF have fewer symptoms. The Arab-Indian and the Senegal haplotype are associated with higher HbF levels (17% and 12.4% respectively). In general patients carrying these haplotypes have milder symptoms than the Bantu or Benin haplotypes (Blood 2014; 123: 481)

 

Haplotypes and Human Migrations

Trade, conquests and human migrations (voluntary and slave trade) have disseminated the African haplotypes beyond Africa.

  1. The Mediterranean: Most of the Mediterranean (Greece and Scilly) has the Benin haplotype. This reflects pre-historic migrations from Central West Africa along the then fertile Sahara to North Africa. From here it spread to the Mediterranean via the interactions (Trade and wars) between the two regions. The only exception is Portugal. Portugal has the Senegal haplotype which reflects the trading contacts between Portugal and Atlantic West Africa (Angola and Mozambique).
  2. Americas: Neither the native americans nor the original European settlers to the Americas carried the HbS gene. HbS was imported to the Americas with the slaves from Africa. Jamaica was an important slave import hub and records for where tthe slaves arrived from are available. Jamaica has 73% Benin haplotype, 17% Bantu and 10% Senegal haplotypes. These numbers are close to the actual number of slaves who arrived in Jamaica from regions of Africa where these haplotypes are prevalent. Similarly the distribution of haplotype correspond to the origins of slaves in Baltimore and South Carolina (Mariam Bloom. Understanding Sickle Cell Disease, Page 34).
  3. Arab or Indian: It is not clear if the Arab-Indian haplotype originated in India or Saudi Arabia. But considering that all of tribal India has only one haplotype but the East and West Arabian Peninsula have different haplotypes it is possible that the haplotype originated in India.
  4. Spread to Other Parts: As opposed to the era of slave trade modern migration of people in the recent past have been voluntary. These populations have spread across the world as have those form mediterranean but to a lesser extent. These migrations have introduced the HbS gene in areas where it was not indigenous.

 

Heterozygous β-Thalassaemia 


β-Thalassaemia is an inherited disease characterised by an imbalance between production of α and β globin chains of haemoglobin resulting from impaired production of β chains. The genes responsible for β-thalassaemia carry mutations in areas coding for the β globin gene or regions regulating the expression of this gene. Patients who are homozygous of compound heterozygous for the gene are symptomatic. They manifest as thalassaemia major. Thalassaemia major is a fatal illness where patients suffer the consequences of anaemia, bone marrow hyperplasia and iron overload. Iron overload that results from increased iron absorption and repeated transfusion is the cause of death. The treatment consists of lifelong transfusion with iron chelation or in those who have a matched donor, allogeneic bone marrow transplantation.

Thalassaemia Inheritance

The risk of inheritance of β-thalassaemia in offsprings when both parents are heterozygous is shown on the left. There is a 25% risk of thalassaemia major, 50% risk of heterozygous β-thalassaemia and 25% of the offsprings will be normal. If one of the parents does not carry the thalassaemia gene there is a 50% risk of the offspring carrying heterozygous β-thalassaemia and 50% of the offsprings will be normal.

As opposed to homologous or compound heterozygous β-thalassaemia, heterozygous the β-thalassaemia is asymptomatic. The condition is also known as β-thalassaemia minor (see classification of β-thalassaemia). The terminology reflecting the asymptomatic nature of the disease. Though β-thalassaemia is an asymptomatic disease the diagnosis has clinical implications. These include:

  1. Risk of β-thalassaemia in children: β-Thalassaemia major is inherited in an autosomal recessive manner. If both the parents are heterozygous for β-thalassaemia there is a 25% risk of the child suffering from thalassaemia major (see figure above, left). The most effective way to prevent β-thalassaemia major is to ensure that at least one parents does not carry the β-thalassaemia gene (see figure above, right). Diagnosis of an index case of heterozygous β-thalassaemia should initiate a search for all individuals carrying the β-thalassaemia gene in the family. Patients with heterozygous β-thalassaemia should be discouraged from choosing another heterozygous β-thalassaemia as a life partner. Those who make this choice despite counselling or those who already married should be explained the importance of prenatal diagnosis of β-thalassaemia major on conception and encouraged to undergo the same.
  2. Prevention of unnecessary iron therapy: Iron deficiency anaemia, like thalassaemia, is microcytic and hypochromic. Iron therapy alleviates the anaemia of thalassaemia only if iron deficiency co-exists. Iron therapy is associated with gastrointestinal adverse effects. Some patients with heterozygous β-thalassaemia have increased iron absorption and there have been reports of iron overload in β-thalassaemia trait (Br J Haematol). Diagnosis of heterozygous β-thalassaemia spares the patient unnecessary and sometimes dangerous iron therapy.

Pathophysiology of Heterozygous β-Thalassaemia

Heterozygous β-thalassaemia minor is characterised by an imbalance between the α and β globin chains because of decreased production of β-chains. The clinical manifestations of thalassaemia depend on the degree on imbalance between α chains and non-α (β+γ) chains. Thalassaemia minor, the phenotype of heterozygous β-thalassaemia results when the ratio of α to non-α chains is 2:1 (Cold Spring Harb Perspect Med 2012;2:a011726).

Clinical Features

Patients of heterozygous thalassaemia are asymptomatic. The clinical presentations is that of thalassaemia minor. Diagnosis is usually made incidentally when

  1. A haemogram is performed for another reason or
  2. Screening is performed following detection of a β-thalassaemia patient in the family
  3. Evaluation of anaemia of pregnancy

Though traditionally heterozygous β-thalassaemia are considered to be asymptomatic recent studies have found these patients to have symptoms of mild anaemia. Heterozygous β-thalassaemia may become symptomatic

  1. In pregnancy:The third trimester of pregnancy sees a plasma volume expansion accompanied by an increased production of red cells. In normal women the volume expansion is more than the increase in the number of red cells. Women become anaemic in the third trimester as a result of this discrepancy. Patients with β-thalassaemia trait show a plasma volume expansion but are not able to increase the number of red cells like normal women do. As a consequence women with heterozygous β-thalassaemia become more anaemic than normal women. This anaemia is usually mild and haemoglobin values lower than 8-9g/dL should prompt a search for another cause of anaemia. Iron deficiency anaemia is the commonest anaemia in pregnancy and it mimics thalassaemia. Serum iron and iron binding capacity may not be reliable in pregnancy and a serum ferritin must be performed for diagnosing iron deficiency.
  2. In case of autosomal dominant β-thalassaemia: Some forms of deletion β-thalassaemia result in the formation of an unstable β chain that forms inclusions. These inclusions cause ineffective erythropoietin and a thalassaemia like syndrome. Such patients are said to have a dominant β-thalassaemia and have the clinical picture of thalassaemia intermedia even when heterozygous.
  3. If the co-inherit an overdose of α thalassaemia genes: Manifestations of β-thalassaemia depend on the ratio of α to non-α chains. Thalassaemia minor results when the ration is 1.5-2.5:1 and intermedia when the ratio is about 4:1. Thalassaemia major is seen with higher rations. Some patients have three or even four α globin genes (ααα or αααα). These patients produce more α globin chains. Increase in α chains can push up the ratio of α to non-α chains and result in manifestations of thalassaemia intermedia in heterozygous β-thalassaemia. Similarly co-inheritance of α and β thalassaemias can attenuate the manifestations of thalassaemia.

Laboratory Features

  1. Haemogram: Heterozygous β-thalassaemia is characterised by anaemia, low MCH and low MCV. The MCHC is usually normal. The erythrocytes count is high and there may be a slight increase in the reticulocyte count. The peripheral smear shows microcytosis, hypochromia, poikilocytosis, basophilic strippling and target cells. Co-inheritance of α-thalassaemia attenuates the findings. The red cell indices are normal at birth. Changes associated with heterozygous β-thalassaemia become apparent by 3 months. By 6 months thalassaemic changes are firmly established.
  2. Haemoglobin A2: Haemoglobin A2 (HbA2) is in the range of 3.5-7%. Iron deficiency causes a disproportionate fall in HbA2 in patients with heterozygous β-thalassaemia but does not push the HbA2 levels in the normal range. Heterozygous β-thalassaemia with normal HbA2 is discussed below.
  3. Bone Marrow: The bone marrow shows erythroid hyperplasia with pyknotic normoblasts dominating. There is ineffective erythropoiesis mainly due to destruction of haemoglobinized precursors. Studies have shown approximately 25% decrease in efficiency of erythropoiesis.
  4. Iron Metabolism: Rate of iron absorption is slightly increased. Some cases of iron overload have been reported. Iron deficiency may co-exist the heterozygous β-thalassaemia particularly in pregnancy. Serum ferritin estimations should be performed to diagnose iron deficiency.
  5. Osmotic Fragility: Osmotic fragility is increased particularly after 24 hours of sterile incubation of erhthrocytes. It has been suggested that this be used as a screening test for heterozygous β-thalassaemia but has not gained widespread acceptability.
  6. Globin Chain Synthesis: Heterozygous β-thalassaemia is associated with a α:β ratio of 1.5-2.5:1.

Genotype Phenotype Co-relations

There is a continuous spectrum of changes with mild alleles having less pronounced effect on haematological parameters. Severe alleles have higher HbA2 values. Mild thalassaemia with high HbA2 suggest a promoter mutation.

Interaction between Heterozygous β-thalassaemia and other Haemoglobinopathies

Heterozygous β-thalassaemia is a common disorder and a chance associations may be seen with other haemoglobinopathies or inherited disorders of erythrocytes. Fortunately no deleterious association has been found with most disorders these include glucose-6-phosphate dehydrogenase deficiency, hereditary spherocytosis  and pyruvate kinase deficiency.

α-Thalassaemia

α-Thalasaemia tends to reduce the α:β globin ratio. The amount of free α globin chain reduces attenuating the manifestations of heterozygous β-thalassaemia.

Sickle Cell Disease

β-Thalassaemia and sickle-cell diseases are common genetic diseases. Co-inheritance of the two is found in Africa, Mediterranean and sporadically through India. The symptoms depend on the relative amounts of HbS and HbA. HbA polymerises less than HbS. High levels of HbA reduce symptoms of sickling.  HbF is excluded from and protects against sickling. The clinical manifestations of patients co-inhereting sickle-cell and β-thalassaemia depend on the type of thalassaemia allele inherited and the HbF levels.

  1. Sickle β-thalassaemia with β0 or severe β+ alleles: Mediterranean forms of β-thalassaemia trait are either β0 severe β+. Patients from this region have severe sickling symptoms and HbA levels <15%.
  2. Sickle β-thalassaemia with mild β+ alleles: African patients of sickle β-thalassaemia inherit mild β+ alleles.  These patients have haemoglobin levels in the range of 20-30%  and mild symptoms . Many do not have symptoms. Diagnosis in some may be made incidentally.
  3. Sickle β-thalassaemia with high HbF: Patients from Indian and Saudi Arabia have mild symptoms despite inheriting severe β alleles because of high levels of HbF.

Treatment of Heterozygous β-Thalassaemia

Heterozygous β-thalassaemia does not need any treatment. A family screening should be carried out to detect other members carrying the thalassaemic β globin gene. Iron therapy should not be administered to patients empirically. Some patient have an increase iron absorption and iron overload has been reported. Iron studies should guide iron therapy. Anaemia can worsen during pregnancy. Folate and iron supplementation may be needed.

 

 

Classification of β-Thalassaemia


β-Thalassaemia is a term applied to describe heterozygous group of diseases that are characterised by a decrease in the production of β globin  chain. Over 200 mutations in the β-globin gene and promoter regions that cause β-thalassaemia have been recognised. Thalassaemic alleles that produce no β-chain are designated β0 and those producing some β chain are designated as β+.  Before the genetic basis of thalassaemia was understood the disease was classified according to the clinical presentation and natural history of the disease. The genetic defects need to be determined for prenatal diagnosis but the clinical patterns remains relevant for clinical management of β-thalassaemia.

Based of the severity of disease three patterns of disease have been identified, thalassaemia major, thalassaemia minor and thalassaemias intermedia

  1. Thalassaemia Major: Thalasaemia major is a transfusion dependent anaemia that usually appears early in life, often in the first year. Anaemia is associated with splenomegaly, skeletal deformities and growth retardation. Iron overload develops by the end of second decade unless chelation is used. Unless treated with blood transfusion and chelation or allogeneic stem cell transplant, it is a fatal illness. There is a severe impairment of β-chain synthesis. Genetically these patients may be β0β0, β0β+ or β+β+.
  2. Thalassaemia Minor: patients with thalassaemia minor are asymptomatic. They are diagnosed when a complete haemogram is performed as a part of antenatal care or as a pert of investigations of another illness. Genetically they me be β0β or β+β.
  3. Thalassaemia Intermedia: Thalassaemia intermedia has a clinical presentation between that of thalassaemia major and thalassaemia minor. It is a very heterogeneous condition. The patient is not transfusion dependent but anaemic with a low and stable haemoglobin. Transfusion may be needed during periods of stress like infection and pregnancy. Advancing age is also associated with transfusion requirement. This may in part be due to hyperplenism associated with splenomegaly. The genetics of thalassaemia intermedia are complex. It may result from a mild β chain defect or because of interaction of β chain defects with other defects of haemoglobin synthesis

Sickle Cells


Sickle Cell - 100X - IMG_0542

Sickle Cells 40X

Sickle Cell 100X - IMG_0540

Sickle Cells – 100X

Sickle Cell 100X - IMG_0538

Sickle Cells – 100X


The three photomicrographs above show sickle cells from a patients with sickle cell anemia. Sickle cell anaemia occurs because an A→T substitution in codon 6 of the β globin chain of haemoglobin. The single nucleotide polymorphism results in valine substituting for glutamic acid resulting in the formation of haemoglobin S (HbS). HbS crystallizes in hypoxic conditions resulting in sickling of erythrocytes.

Related articles
Sickle Haemoglobin and Variants

Sickle Haemoglobin and Varients


Substitution of the amino acid glutamic acid by valine at position 6 of the beta globin gene (HBB glu6val) results in a mutant haemoglobin that polymerizes at low oxygen pressure. This mutation results in sickle shaped cells under hypoxic conditions. The haemoglobin gets its name, sickle haemoglobin, from the phenomena. Sickling is responsible for symptoms of sickle cell anaemia. Shown above are sickle cells from the smear of a patient with sickle cell anaemia.

HbS is an autosomal co-dominant trait. Homozygous individuals suffer from sickle cell anaemia (SS). The clinical profile of compound heterozygous depends on the non-HbS allele.

  1. HbA: HbA does not participate in sickling. Patients with AS have about 35% HbS and 65% HbA there is little sickliness and symptoms. These patients said to have sickle cell trait. A patient with as with an apparent AS pattern can have see sickling (see below).
  2. β-Thalassaemia: The severity of interaction between HbS and β-thalassaemia depends on the severity of the co-thalassaemia. β0-thalassaemia is identical to SS and β+-thalassaemia is a milder disease with severity depending on the degree of impairment of the β-chain synthesis.
  3. Other Sickling haemoglobinopathies: Co-inheritnce of Hb-O Arab and Hb D Punjab produces a sickle cell anaemia like disease. Co-inheritance of Hb E produces a sickling disease milder than SS.
  4. Haemoglobinopathies than mimic AS on electrophoresis but produce sickling: There are two categories in this class. First, is a disease that resulting from co-inheritance of an abnormal haemoglobin, Hb Quebec Chori, migrates like HbA but promotes sickling. Patients compound heterozygous for Hb S and and Hb Quebec Chori show and electrophoretic pattern of AS but show sickling. Second are variants of HbS where a second mutation has resulted in an increased tendency to precipitate making a individual heterozygous for these variants symptomatic. These include Hb South End, Hb Jamican Plain Hb S Antilles and Hb S-Oman. The first three have mutations reducing the affinity of the haemoglobin increasing polymerization and sickling.

Diagnosis of Haemolytic Anaemia


Haemolysis is decreased erythrocytes lifespan (normal about 100-120 days). The bone marrow responds to haemolysis by increasing erythrocyte production. Anaemia occurs only when the erythrocyte life span is reduced to about 15-20 days. A compensated haemolytic state is when a patient has a shorted erythrocyte lifespan that is adequately compensated by increased erythrocyte production. These patients may have features of haemolysis except anaemia.


Figure 1. Manifestations of Haemolysis

Clinical Manifestations of Haemolysis

The site of haemolysis, intravascular or extravascular, determines the clinical manifestations of haemolysis (figure 1). Extravascular haemolysis is an exacerbation of a physiological catabolic process. The end product of extravascular haemolysis, like that of normal erythrocyte breakdown, is unconjugated bilirubin. Unconjugated bilirubin can cause brain damage in the forms of kernicterus. The conjugation of bilirubin is so efficient that the serum bilirubin rarely increase to more than 5mg/dL only due to bilirubin overproduction. The blood brain barrier prevents entry of bilirubin in the brain. Both the mechanisms are compromised in a neonate making them prone to kernicterus in case of haemolysis as is seen in haemolytic disease of the newborn. The only consequences of extravascular haemolysis occurring in patients beyond the neonatal period are anaemia, unconjugated hyperbilirubinaemia, mild to moderate splenomegaly and pigment gallstones.

Intravascular haemolysis is lysis of cells within the blood vessels. Cell free haemoglobin is oxidizing and pro-inflammatory. Haptoglobin binds and detoxifies cell free haemoglobin but it has a limited capacity. Haemoglobinaemia resulting from intravascular haemolysis causes serious clinical manifestations including renal failure, hypertension, smooth muscle spasm and a prothrombotic state. Many of these result from the nitric oxide scavenging capacity of haemoglobin (Rother et al JAMA 293:1653;2005). Persistent haemoglobinuria is a feature of chronic intravascular haemolysis, e.g. those with haemolysis due to prosthetic valves and paroxysmal nocturnal haemoglobinuria. Iron deficiency may accompany chronic intravascular haemolysis because of haemoglobinuria. Extravascular haemolysis is not associated with haemoglobin loss and does not cause iron deficiency.

Intravascular haemolysis often presents with acute severe haemolysis as may be seen with drug induced immune haemolysis, haemolysis in G6PD deficient patients, severe malaria and mismatched transfusion reactions. The diseases causing extravascular haemolysis have a less acute presentation.

The Diagnosis of Haemolytic Anaemia

Estimation of erythrocyte lifespan is too cumbersome to be used routinely in clinical practice. The diagnosis of haemolytic anaemia instead relies on indirect evidence of increased erythrocyte destruction. This includes:

  1. Increased production of erythrocytes in an anaemic patient with no evidence of blood loss
  2. Increase in products of erythrocyte destruction – Lactate dehydrogenase (LDH) and haemoglobin
  3. Consequences of haemoglobinaemia – low haptoglobin, haemoglobinuria, renal failure and hemosiderinuria

Increased erythrocyte production manifests as reticulocytosis (see The Reticulocyte Count for performing and interpreting reticulocyte count). If polycythaemia is not seen despite reticulocytosis, an equivalent erythrocyte loss is presumed to be occurring. Erythrocytes loss may internal, e.g., haemolysis, or external, e.g., bleeding. Reticulocytosis is seen when a large amount of blood is lost over a short period. Such losses are rarely occult. If there is no obvious blood loss, reticulocytosis in a patient whose haemoglobin is not increasing indicates haemolysis. Large occult haematomas, typically occurring retroperitoneally, may mimic haemolysis.

Lactate dehydrogenase (LDH) is abundant in brain, erythrocyte, liver and lung. Injury to any of these organs increases LDH. LDH is also increased in diseases characterized by increased cell proliferation e.g. acute leukaemia, lymphomas (particularly high grade non-Hodgkin lymphoma), myeloproliferative diseases and myelodysplastic syndrome. The clinical picture, radiology and laboratory investigations can exclude non-erythrocyte sources of LDH.

Haemolytic anaemias are characterized by an increase in LDH. The increase in LDH is more pronounced in patients with intravascular haemolysis and is matched by that seen in patients with nutritional megaloblastic anaemia. Unlike megaloblastic anaemia, intravascular haemolysis is characterized by reticulocytosis, haemoglobinaemia and haemoglobinuria.

The alterations caused by catabolism of haemoglobin released during haemolysis depend on the site of haemolysis (see haemoglobin catabolism). Haemoglobin released during extravascular haemolysis is metabolized to unconjugated bilirubin. The liver responds by increasing conjugation and excretion of bilirubin which increases urinary urobilinogen. Unconjugated hyperbilirubinaemia (unconjugated bilirubin >85% of total bilirubin) with increased urobilinogen is a characteristic of haemolytic anaemia. It differentiates haemolytic anaemia from Gilbert’s Syndrome, a common disorder of bilirubin conjugation that is seen in 3-7% of population. The urobilinogen levels in Gilbert’s syndrome are low. Crigler-Najjar syndrome type I and II are present with a more pronounced increase in bilirubin (>5mg/dL and >20mg/dL respectively) and are rarely considered as a differential diagnosis of an uncomplicated haemolytic anaemia. Bilirubin congugation defects do not show reticulocytosis. The bilirubin levels in patients with haemolytic anaemia rarely exceed 5mg/dL. Higher levels indicate a co-existing illness. If the bilirubin is unconjugated then an incidental co-inheritance of Gilbert’s syndrome should be suspected. Haemolytic anaemia increases the risk of pigment stones. These may cause obstructive jaundice. These patients, unlike those with haemolysis have a higher proportion of conjugated bilirubin with an elevated alkaline phosphatase. Donor screening for hepatitis B and C have made transfusion induced hepatitis a thing of the past.

Haemolysis releases haemoglobin. Cell free haemoglobin has oxidizing and pro-inflammatory properties. Haptoglobin is a haemoglobin scavenger that protects the body from the toxic effects of cell free haemoglobin. Haemolysis decreases serum haptoglobin (see haemoglobin catabolism). Extravascular haemolysis does not cause haemoglobinaemia, but contrary to what may be expected, it does cause low haptoglobin levels.  Low haptoglobin is of no value in differentiating intravascular and extravascular haemolysis. It appears that there is some haemoglobinaemia during extravascular haemolysis. It is possible that there is some intravascular component to extravascular haemolysis or there is regurgitation of haemoglobin from the macrophage during phagocytosis. Haptoglobin is synthesized by the liver. Decrease synthesis limits the usefulness of haptoglobin in the diagnosis of haemolysis in the presence eof chronic liver disease. Haptoglobin is an acute phase reactant that in increased by corticosteroid administration. Patients with acute inflammation and those on corticosteroid therapy may have a normal haptoglobin despite haemolysis.

Haemoglobin filtered into the glomerular fluid results in haemoglobinuria when the absorptive capacity of renal tubules (5g/day, Turgeon, ML. Clinical Hematology: Theory and procedures 4th ed. Lippincott Williams and Wilkins, 2005:89) is exceeded. Haemoglobin can precipitate in the tubules and causes renal failure. The haemoglobin absorbed by the renal tubules in metabolized by haemoglobin oxygenase to iron, bilirubin and amino acids. The iron is stored in the renal tubular cells as hemosiderin. These cells desquamate and cause hemosiderinuria. Hemosiderinuria appears a few days after hemolysis and may persist for a week or more after hemolysis has abated. Iron deficiency anaemia caused by hemosiderinuria may complicate chronic low grade intravascular haemolysis as is seen in prosthetic valve haemolysis, paroxysmal nocturnal haemoglobinuria or march haemoglobinuria.

Diagnosis of haemolysis by transfusion requirements

Even with complete cessation of erythropoiesis only about one unit of blood is needed every week in an adult to maintain haemoglobin of about 10g/dL. A greater requirement in the absence of evidence of blood loss suggests haemolysis. Transfused blood will only be lysed if there is an extrinsic defect e.g. autoimmune haemolytic anaemia. Cells transfused to patients with an intrinsic defect e.g. hereditary spherocytosis will have a normal life span. A patient who needs more than one unit of blood per week to maintain haemoglobin of about 10g/dL is likely to have a haemolytic anaemia if blood loss can be excluded. This haemolysis is likely to be due to an extrinsic cause.

Differential Diagnosis of Haemolysis

Haemolysis may be confused with conditions associated with unconjugated hyperbilirubinaemia, anaemia and reticulocytosis. These include bilirubin conjugation defects, acute blood loss and megaloblastic anaemia.

Bilirubin Conjugation Defects Bilirubin conjugation defects include Gilbert’s syndrome and Crigler-Najjar syndrome types I and II. The bilirubin levels in Crigler-Najjar syndrome type I and II are more than 5mg/dL so these entities are rarely confused with haemolysis. Gilbert’s syndrome is characterized by bilirubin levels which can be seen in haemolysis but there is no associated reticulocytosis. Bilirubin conjugation defects are characterized by low urobilinogen levels.

Acute blood loss: Acute blood loss, like haemolysis, causes anaemia and reticulocytosis but these are not the presenting complains. Blood loss needed to cause reticulocytosis is rarely ignored by the patient and is in fact the reason for seeing the doctor. When severe, it may be accompanied by signs of hypovolemia. The presenting complains of patients with haemolytic anaemia are related to anaemia and hyperbilirubinaemia. Chronic occult blood loss has a different presentation that acute blood loss or haemolysis. The gradual fall in haemoglobin associated with occult blood loss makes the patients tolerant to anaemia unless a cardiovascular or respiratory co-morbidity exist. These patients present with a clinical picture of iron deficiency namely, fatigue, malaise and hypochromic microcytic anaemia with anisocytosis. There is no jaundice and there is reticulocytopenia. Large occult haematomas cause anaemia and reticulocytosis. As the haematoma resolves jaundice may be seen.

Megaloblastic anaemia Megaloblastic anaemia, like haemolytic anaemia, presents with macrocytic anaemia, indirect hyperbilirubinaemia, and a low serum haptoglobin. These patients have reticulocytopenia. The macrocytosis is more pronounced. An MCV of >110 fl usually indicates a megaloblastic anaemia. Patients with nutritional megaloblastic anaemia respond to treatment with pronounced reticulocytosis, usually seen by 5-7 days after initiating therapy and lasting for up to 2 weeks.  Reticulocyte counts may be as high as 20-25%. A history of treatment with vitamin B12 and/or folic acid must be sought in every patient of haemolytic anaemia to avoid confusion with megaloblastic anaemia.

 

Related Pages

  1. Reticulocyte Count
  2. Evaluating Anaemia
  3. Haemoglobin Catabolism
  4. Sickle Haemoglobins and Variants
  5. Red Cell Indices

Haematology Atlas Pages

  1. Sickle Cells
  2. Pappenheimer Bodies