Evolution and Spread of HbS

The gene for β globin (OMIM  is present on chromosome 11 (11p15.4) along with other globin genes (ε, γ, γ and δ). This is known as the β-globin cluster . Individuals carrying identical genes on the β-globin gene cluster may not have identical DNA sequences in non-codeing regions of the DNA of the cluster. The non-coding regions include segments of DNA between genes and introns within genes. . Differences in DNA exist between individuals every 1000-2000 bases in the form of single nucleotide polymorphisms (SNPs). Single nucleotide polymorphisms are variations in a single nucleotide that occurs at a specific position in the genome. Many of these differences have no consequences on gene expression because either they do not result in change in amino acid sequence or they occur in regions of DNA that neither code for the gene nor regulate the gene. SNPs evolve by spontaneous mutations over time. The lesser the number of such differences between two individuals closer the individuals are the each other genetically (and in terms of evolution). Fewer differences in SNPs between individuals mean a more recent common ancestor.

One of the meanings of the word haplotype is a pattern of SNPs. A haplotype may be considered as a DNA “environment” in which the gene(s) occurs. This “environment” is created by the sequence of single nucleotide polymorphisms in which the gene(s) exists. As mentioned above differences in SNPs (and hence the “environment” the gene(s) exist in) evolve by spontaneous mutations over period of time. Fewer the differences between the “environments” the genes occurs in the more the likelihood that they come from related individuals.

HbS results from a single base substitution in the codon 6 of the β-globin gene. GAG becomes GTA resulting in substitution of valine for glutamate. This change results in a haemoglobin that crystallizes in hypoxic conditions resulting in a haemolytic anaemia. HbS occurs in diverse population groups including African, Mediterranean, Middle-Eastern and Indian. Is the haplotype of the HbS gene in these regions similar?

The HbS mutation occurs on five different haplotypes four African and one Arab-Indian. The mutation is the same (GAG to GTA on codon 6) but the SNPs are different. The haplotypes are

  1. Senegal: The Senegal HbS haplotype is found in Atlantic West Africa and Portugal
  2. Benin: The Benin HbS haplotype is found Central West Africa, Northern Africa and Mediterranean Europe (Greece, Sicily)
  3. Central African Republic or Bantu: The Central African Republic or Bantu is found in South Central and Eastern Africa
  4. Cameroon: The Cameroon haplotype is found in the Eton ethnic group of eastern Cameroon
  5. Arab-Indian: The Arab-Indian haplotype is the only non-African phenotype of HbS found in the eastern oasis of Saudi Arabia and India.

Origin of Haplotypes

There are two theories about the origin of haplotypes. The first, and the more accepted one, states that the five haplotypes arose from five independent mutations. An alternative hypothesis states that HbS mutation occurred only once and spread to other haplotypes by gene conversion.


Haplotypes and Severity of Symptoms

Symptoms of sickle cell anaemia are a consequence of crystallisation of haemoglobin under hypoxic conditions. HbF inhibits sickling. Patients with high HbF have fewer symptoms. The Arab-Indian and the Senegal haplotype are associated with higher HbF levels (17% and 12.4% respectively). In general patients carrying these haplotypes have milder symptoms than the Bantu or Benin haplotypes (Blood 2014; 123: 481)


Haplotypes and Human Migrations

Trade, conquests and human migrations (voluntary and slave trade) have disseminated the African haplotypes beyond Africa.

  1. The Mediterranean: Most of the Mediterranean (Greece and Scilly) has the Benin haplotype. This reflects pre-historic migrations from Central West Africa along the then fertile Sahara to North Africa. From here it spread to the Mediterranean via the interactions (Trade and wars) between the two regions. The only exception is Portugal. Portugal has the Senegal haplotype which reflects the trading contacts between Portugal and Atlantic West Africa (Angola and Mozambique).
  2. Americas: Neither the native americans nor the original European settlers to the Americas carried the HbS gene. HbS was imported to the Americas with the slaves from Africa. Jamaica was an important slave import hub and records for where tthe slaves arrived from are available. Jamaica has 73% Benin haplotype, 17% Bantu and 10% Senegal haplotypes. These numbers are close to the actual number of slaves who arrived in Jamaica from regions of Africa where these haplotypes are prevalent. Similarly the distribution of haplotype correspond to the origins of slaves in Baltimore and South Carolina (Mariam Bloom. Understanding Sickle Cell Disease, Page 34).
  3. Arab or Indian: It is not clear if the Arab-Indian haplotype originated in India or Saudi Arabia. But considering that all of tribal India has only one haplotype but the East and West Arabian Peninsula have different haplotypes it is possible that the haplotype originated in India.
  4. Spread to Other Parts: As opposed to the era of slave trade modern migration of people in the recent past have been voluntary. These populations have spread across the world as have those form mediterranean but to a lesser extent. These migrations have introduced the HbS gene in areas where it was not indigenous.


The BCR-ABL1 Gene

CML Pathogenesis-600pxBCR-ABL1 is a fusion gene formed as a result of the t(9;22)(q34;q11) chromosomal translocation, the translocation that results in the formation of the Philadelphia chromosome. The Abelson murine leukaemia viral oncogene homolog 1 (ABL1) gene from 9q34 is translocated downstream to a region at 22q11 known as breakpoint cluster (BCR). The fusion gene encodes for a constitutionally active tyrosine kinase that has been shown to drive the expression chronic myeloid leukaemia phenotype. BCR-ABL1 gene has also been on implicated in the pathogens is of acute lymphoblastic leukaemia and in rare cases of acute myeloid leukaemia. The gene has been targeted with unparalleled success by the first tyrosine kinase inhibitor approved in clinical practice, imatinib.

 Molecular Biology of BCR-ABL

The ABL1 proto-oncogene is located on chromosome 9 at q34. Chromosome 22 has the BCR gene at 22q11. The ABL1 gene translocated downstream to the BCR gene as a result of the t(9;22)(q34;q11) translocation. ABL1-BCR translocation also occurs and may express but is of no clinical significance.


Molecular Biology of CML

The BCR-ABL1 fusion gene and it’s variants

The breakpoint of the ABL1 gene may be upstream exon 1a, between exon 1a and 1b or downstream exon 1b but it is almost always upstream exon 2. With rare exceptions all transcripts of BCR1-ABL1 gene have exon 2-11 of the ABL1 gene. The BCR breakpoints are variable and determine the size as well as the pathogenic properties of the BCR-ABL1 gene.. The breakpoint on the BCR gene are clustered in three regions known major cluster, minor cluster and micro cluster (Table 1). Depending on the location of breakpoint  on the BCR gene three types of protein are synthesized. The p210 transcript is associated with CML and some patients with Philadelphia positive acute lymphoblastic leukaemia. The shorter p190 transcript is associated with philedelphia positive acute lymphoblastic leukaemia and some patients of chronic myeloid leukaemia. The CML that carry this mutation show monocytosis and have a more aggressive course. The p230 is the largest and the rarest of the BCR-ABL1 transcripts. It is associated with a more indolent course and is found in patients with the rare chronic neutrophilic leukaemia. Atypical transcripts e1a3, e13a3 and e6a2 have been described.

Table 1: The BCR-ABL1 fusion genes

 Major Cluster  Minor Cluster  Micro-Cluster
 Synonym M-Cluster m-cluster µ-cluster
Location exons 12-16 Between alternative exon 2, e2’ and e2 between exons e19 and e20
Protein p210 p190 p230
Associated Leukaemia  CML, e14a2 shown to have thrombocytosis in some studies., Ph+ ALL  Ph + ALL; CML that tends to have monocytosis and an agressive course  Chronic Neutrophilic Leukaemia, Small reports describing patients with a course resembling classical CML

Mutagenicity of BCR-ABL1

ABL1 is a nuclear kinase whose activity is tightly regulated by the cell. BCR-ABL1 translocation results loss of regulation and the kinase is  cosntitutively active. Sustitution of ABL1 at the N termnal by segments of the BCR gene result in the synthesis of a protein that has the capacity to dimerise. Dimerisation transphosphorylates and then aurtophsophorylates the the kinase fully activating it. The precise mechanism how BCR-ABL1 leads to chronic myeloid leukaemia is not known but activation of  phosphatidylinositol kinase, RAS/Mitogen activated protein kinase and JAK/STAT pathway has been demonstrated in BCR-ABL1 positive cells. These pathways are involved in cellular growth and differentiation. The BCR-ABL1 kinase also phosphorylates proteins involved in adhesion and migration and this may have a role in premature release of myeloid cells in circulation. CML cells have a two to sixfold increase in reactive oxygen species and have impaired DNA repair. Reactive oxygen species can induce DNA double strand breaks. The results is additional mutations and these are believed to be responsible for blast crisis and acclerates phase.

Tyrosine kinase inhibitors targeting the BCR-ABL1 protein induce a remission in most patients of CML. About half the patients who have achieved sustained complete molecular response relapse on discontinuation of the tyrosine kinase inhibitors. This suggests that the stemat least some CML stem cells are not BCR-ABL1 dependent for growth. Experimental observations support this hypothesis.

Targeting the BCR-ABL1 Gene

The BCR-ABL1 gene was the first gene to be targeted by a tyrosine kinase inhibitor, imatinib. Imatinib was followed by dasatinib, nilotinib, Busotinib and Panotinob. Imatanib, Dasatinib and Nilotinib are approved to first line use. Imatinib has resulted in a 85% 8 year survival. Dasatinib and nolitinib are active in imatinib resistant CML and are now approved for first line use. Drug resistance results from mutations in BCR-ABL1 kinase. The T315I mutation or the gatekeeper mutations impaires access of TKIs to the BCR-ABL1 kinase making most drugs inactive. Panotinib can inhibit the T315I mutation.


Further Reading

Barnes DJ Melo JV. Molecular Basis of Chronic Myleoid Leukaemia. In Chronic Myeloproliferative Disorders: Cytogenetic and Molecular Anomalies. Bain Barbra J (Ed) 2003.

Dominant-Negative Phenotype

The human genome has two alleles of any gene. An allele may be dominant, recessive or co-domainant. Only one copy of an allele is needed for a dominant allele to express. A recessive allele expresses only when both the alleles are recessive.

The A and B blood group allele is dominant over the O group but are co-dominant with respect to each other. Individuals having genotype AA or AO express the A blood group antigen. Similarly individuals having genotype BB or BO express the B blood group antigen. An individual having genotype AB express both the blood group antigens. O is a recessive allele and only individuals with genotype OO have blood group O.

The biochemical basis of the ABH system is modification of the H antigen by enzymes encoded by the genes of blood group substances. Addition of N-acetylgalactosemine by the glycosyltransferase encoded by the allele encoding for A blood group converts the H antigen to A group antigen. Similarly the addition of galactose results in the synthesis of B group antigen. The allele for O group has a mutation and does not add any sugar.

Recessive genes are genes with mutations that result in loss of function. This is the case with the O blood group gene or with a thalassaemia gene. If recessive allele is present in the heterozygoyus state the product of the dominant allele, which encodes a functional protein, ensures there is synthesis of functional protein. The levels of encoded proteins in the presence of a mutant and recessive gene may be lower than in an individual without the mutant gene. Normal function is possible even with reduced levels of the encoded protein in almost all individuals and no disease occurs. This is the case with individuals with thalassaemia trait who have lower haemoglobin than normal individuals but this does not cause symptoms related to anaemia.

Some genes that encode for non-functional proteins manifest even when heterozygous with a functioning gene. These genes are known as dominant-negative. These genes usually encode for proteins that are dimers or multimers. The recessive gene has the ability to “poison” the components of the dimer/multimer produced by the normal genes and render them functionless.

Recessive genes encode for proteins that cannot form dimers/multimers. The product of these genes has no effect on the activity of the protein encoded by the normal allele. The levels of proteins may be reduced but all the protein synthesized by the dominant gene is functional. Usually the levels of proteins fall to half that in normal. This is almost always sufficient for normal function.


Figure 1. The dominant negative phenotype


The dominant-negative genes have the capacity to form dimers/multimers and also also have the capacity to inhibit the function of the product of the normal gene (figure 1). A patient carrying a dominant-negative allele has reduced levels of functional proteins because of inhibition of function by the product of dominant negative allele. If one considers a patient who has a dominant negative mutation for a protein that is a homodimer, as is the case with factor XI, 75% of the factor XI synthesized will have the monomer produces by the dominant negative gene, Only 25% of the factor XI will be functional. This is consistant with the observation that these patients have factor XI levels between 20-30%. The situations in multimeric proteins and those proteins that are hetrodimers/hetromeltimers is more complex but the principle remains the same.