Lymphocytosis in Adults


Normal Peripheral Blood Lymphocytes

Lymphocytes are small leucocytes with a round nucleus and a thin rim of cytoplasm. About 10% of the peripheral lymphocytes are large, have a more abundant cytoplasm that has granules. These are called large granular lymphocytes (LGL). About 85% of the peripheral blood lymphocytes are T lymphocytes. The remaining are B lymphocytes and NK cells with B lymphocytes dominating.

Lymphocytosis is increase in the lymphocyte counts to what is normal for age. Lymphocyte count is highest at birth and falls with age. Normal lymphocyte counts in adults is 1000 to 4800 cells/mm3.

Causes of Lymphocytosis

Lymphocytosis may be reactive (see table below) or due to a malignancy. Reactive lymphocytosis is polyclonal. Lymphocytosis due to malignancy is monoclonal. The most common cause of reactive lymphocytosis is infectious mononucleosis due to Epstein-Barr virus infection. Reactive lymphocytosis may be seen in other viral infections, drug hypersensitivity, thymoma and after splenectomy. Persistent polyclonal B cell lymphocytosis is a condition found in middle aged women who smoke.

Monoclonal B cell lymphocytosis and chronic lymphocytic leukaemia are the commonest causes of primary lymphocytosis.

Causes of Lymphocytosis
Reactive lymphocytosis (reactive lymphocytes unless mentioned otherwise)

  1. Infections
    1. Viral: Infectious mononucleosis (EBV), Adenovirus, CMV, Coxsackie virus, Hepatitis, Acute HIV infection, Human T-lymphotropic virus type I, Influenza, Measles, Mumps, Poliovirus, Rubella
    2. Bacterial: Pertussis, Cat scratch disease and other chronic bacterial infections
    3. Parasitic: Toxoplasmosis
  2. Drug hypersensitivity reactions
  3. Stress (normal looking lymphocytes)
  4. Persistent polyclonal B cell lymphocytosis (lymphocytes have a distinct nuclear cleft)
  5. Post-splenectomy  (normal looking lymphocytes)
  6. Thymoma  (normal looking lymphocytes)
  7. Hyperreactive malarial splenomegaly  (normal looking lymphocytes)

Primary Lymphocytosis

  1. B Lymphocytic
    1. Monoclonal B cell lymphocytosis
    2. Chronic lymphocytic leukemia
    3. B-Prolympocytic leukaemia
  2. Leukaemia Phase of non-Hodgkin lymphoma (common
    1. B cell Follicular lymphoma
    2. Mantle cell lymphoma
    3. Splenic marginal zone lymphoma
    4. Lymphoplasmacytic lymphoma
  3. T Cell Lymphoma
    1. Prolymphocytic leukaemia
    2. Sezary cell leukaemia
    3. Adult T-cell leukaemia/lymphoma
    4. Large Granular cell leukaemia
  4. Acute lymphoblastic leukemia

Clinical Profile of Patients with Lymphocytosis

Infectious Mononucleosis: Infectious mononucleosis (IM) is a self limiting disease of adolescents that presents with prodrome of fatigue, myalgia lasting 1-2 followed by fever pharyngitis and lymphadenopathy, splenomegaly, hepatomegaly and rash. The peripheral smear shows lymphocytosis with atypical lymphocytes. These are irregular, have slightly larger nuclei, a more open chromatin and abundant cytoplasm. Some cells may appear blastoid. Atypical lymphocytes are predominantly CD8+. Differentiation from lymphocytosis of malignancy is made by

  1. Clinical Picture: Patients with IM have fever, malaise, pharyngitis and other features of IM.
  2. Morphology of Lymphocytes: Reactive lymphocytes of IM show variations in size and morphology. Cells from patients with malignant lymphocytoisis are more uniform.

Other infection: Atypical lymphocytosis is a feature of other infections listed in the table above. Typical features of the causative infection may or may not be present. CMV associated mononucleosis syndrome is indistinguishable from IM. Lobulated lymphocytes are a feature of human T-lymphotropic virus type I (HTLV-I ) infection.

Lympocytosis with B pertussis: Pertusis caused by Bordetella pertussis with upper respiratory symptoms that evolves into a paroxysmal cough in about 1-2 weeks. Pertusis is an exception amongst acute respiratory infections in that it causes lymphocytosis rather than neutrophilic leucocytosis. Unlike other viral infections lymphocytes of pertussis are small and have cleaved nucleus.

Stress Lymphocytosis: Stress has been associated with an increased lymphocyte count. Counts may range 4,000 to 10,400/mm3. All subsets of lymphocytes increase. The counts normalises after the stressful event passes (Am J Clin Pathol. 2002 May;117(5):819-25).

Persistant Polyclonal B cell lymphocytosis: Persistent polyclonal B cell lymphocytosis is seen in young to middle-aged women who are smokers. The patients show the presence of large binucleate lymphocytes. There is polyclonal increase in IgM in the serum. The patients do not have lymphadenopathy and splenomegaly.

Splenectomy: Lymphocytoisis that persists has been reported in patients who have undergone splenectomy (Clin Lab Haematol. 1995 Dec;17(4):335-7).

Thymoma: Paraneoplastic T cell lymphocytoss may rarely be seen in patients with thymoma. The patients present with a mediastinal mass and lymphjocytiosis. They need to be differentiated from T Lymphoblastic leukaemia who can present with mediastinal mass with lymphoblasts (Ann Oncol 2007; 18:603-604).

Hyperreactive malarial splenomegaly: Hyperreactive malarial splenomegaly is seen in residents of malarious areas. It presents with left upper quadrant pain, fatigue and dyspnoea. The patients have a massive spleen. The haemogram shows anaemia, leucopenia and thrombocytopenia. Some patients may have lymphocytosis.

Monoclonal B cell lymphnocytosis: Monoclonal B cell lymphocytosis is a premalignant condition that has a risk of progressing to chronic lymphocytic leukaemia. It it is diagnosed in a patients with lymphocyte count <5000/mm3 without any other evidence of lymphproliferative disease. The morphology and phenotype of the cells is identical to that of chronic lymphocytic leukaemia. Patients are asymptomatic and the disorder is detected incidentally on a haemogram performed for another reason.

Chronic lymphocytic Leukarmia (CLL)/small lymphatic leukaemia: Chronic lymphocytic leukaemia is the leukaemia phase of small lymphocytic lymphoma. Patients with CLL have lymphocytosis with normal looking lymphocytes. A few prolymphocytes may bee seen. If the percentage of prolympocytes is greater then 55% a diagnosis of prolymphocytic leukaemia should be made. The cells express CD19, CD20(usually weak), CD23 and the T cell marker CD5. Patients may have lymphadenopathy, splenomegaly and hepatomegaly. Anaemia and/or thrombocytopenia may co-exist, some of which may be due to autoimmunity.

Prolymphocytic Leukaemia: Prolymphocytic leukaemia is a misnomer. The malignant cell is actually a activated mature lymphocytes. Prolympnocytic leukaemia may be of B cell or T cell type. The cells are twice the size of a normal lymphocyte. The nucleus is round with a moderately condensed cytoplasm. A prominent central nucleolus is present. The cytoplasm is faintly basophilic. Morphiology of T Prolymphocytic leukaemia is similar. Patients present with a high count (usually > 100X109/L), massive splenomegaly in the absence of lymphadenopathy. T PLL may show skin infiltration in 20% of the cases. They may also show serous effusions.

Peripheral blood involvement with non-Hodgkin Lymphoma: Peripheral blood involvement with non-Hodgkin Lymphoma presents with mononucleated cells. Morphological features may  suggest the type of lymphoma. These include villous lymphocytes of splenic marginal zone lymphoma and atypical hairy cell leukaemia, cells with cribriform nuclei in Sézary syndrome plasmacytoiod lymphocytes of lymphplasmacytic lymphoma and lobulated lymphocytes in adult T-cell leukaemia/lymphoma. 

Large Granular Cell Leukaemia: LGL leukaemia is characterised by a count of 2-10X109/L. The cell are large granular lymphocytes with abundant cytoplasm and fine and coarse azurophilic granules. 

 

Advertisements

Evaluation of Splenomegaly


The spleen is a secondary lymphoid organ that lies in intraperitoneally in the left hypochondrium, abuting the diaphragm. It spans from the 9th to 11th rib and weighs between 150-200g. Spleen is supplied by the splenic artery and drains into portal circulation via the splenic vein. It is a part of reticuloendothelial system, immune system and is a site of in utero haematopoiesis. The spleen is enlarged in a diverse set of disease of the above mentioned  systems and in portal hypertension.

Normal Functions of the Spleen

The normal functions of the spleen include

  1. Reticuloendothelial functions: The spleen as a component of the reticuloendothelial system is involved in clearing the blood of ageing or damaged erythrocytes, antibody coated cells and opsonised bacteria. It also removes particles from red cells. The spleen ensures that the red cell in circulation have adequate deformability for passage through microcirculation.
  2. Immune Functions: The spleen is a part of the immune system and plays a role in mounting the immune response . Splenectomy increases the risk of infections particularly with capsulated organisms (see Overwhelming Post-Splenectomy Infection (OPSI)).
  3. Haematopoiesis: Spleen is the site for haematopoiesis in utero. In extrauterine life spleen can become a site of haematopoiesis in disease.

Palpating the Spleen

  1. Palpation of the spleen should start from the right iliac fossa. If this is not done there is a risk of missing a massively enlarged spleen.
  2. Move towards the left costal margin in a direction perpendicular to the margin. Move with each breath. At every position ask the patient to take a deep breath. The tip of the spleen will hit your palpating finger.
  3. If the spleen does not hit your finger move your palpating finger to a position closer to coastal margin, ask the patient to take a deep breath and repeat the procedure described above till your finger hits the costal margin.
  4. If the spleen is felt measure the perpendicular distance between the tip and the left coastal margin. Also note the texture and presence of tenderness.
  5. If the spleen is not felt repeat the procedure with patients lying on right side.
  6. Large spleen can rupture with aggressive palpation. The spleen lies directly under the anterior abdominal wall. One does not need to be aggressive.

Causes of Splenomegaly

The spleen enlarges from the left coastal margin in the direction of the umbilicus. It needs to enlarge 2-3 times before it is palpable. Splenomegaly may be caused be increase in portal venous pressure, infiltrative conditions or when the spleen function needs to increase. Clinically it is useful to classify splenomegaly by size. Massive splenomegaly is enlargement of the spleen beyond the umbilicus. The causes of massive splenomegaly include

  1. Malignant: Chronic myeloid leukaemia, Idiopathic myelofibrois, hairy cell leukaemia, splenic marginal zone lymphoma, chronic lymphocytic leukaemia, prolymphocytic leukaemia
  2. Infections: Tropical splenomegaly, AIDS with Mycobacterium avium complex infections, Kala-azar (visceral leishmaniasis)
  3. Others: β-Thalassaemia major and intermedia, Extrahepatic portal venous obstructions,megaloblastic anaemia, diffuse splenic haemagiosis

The causes of splenomegaly include the above and the following

  1. Portal Hypertension: Cirrhosis, Budd-Chairy syndrome, splenic vein thosmbosis, congestive heart failure, hepatic schistosomiasis
  2. Increased splenic function:
    1. Increased functional demands: Haemolytic anaemia commonly hereditary spherocytosis, autoimmune haemolytic anaemia, β-thalassaemia, early sickle cell anaemia, sickle cell β-thalassaemia,
    2. Infections:
      1. Bacterial: Septicaemia, bacterial endocarditis, splenic abscess, brucellosis, tuberculosis, AIDS with Mycobacterium avium complex infections, secondary syphilis
      2. Viral: Viral hepatitis, infectious mononucleosis, cytomegalovirus,
      3. Parasitic: Malaria , Kala-azar (visceral leishmaniasis), Trypanosomiasis,
      4. Fungal: Histoplasmosis
    3. Immune Disorders:
      1. Autoimmune diseases: Rhumatoid arthritis (Felty’s syndrome), systemic lupus erythrmatosis
      2. Other immune disorders: Immune haemolytic anaemia, immune neutropenia, drug reaction, serum sickness, sarcoidosis
      3. Haemophgocytic lymphohistiocytosis
  3. Infiltrations
    1. Haematological Malignancy:
      1. Myeloid: Chronic myeloid leukaemia, myeloproliferative disease, idiopathic myelofibrosis, polycythaemia vera
      2. Lymphoid: Acute lymphoblastic leukaemia, hairy cell leukaemia, chronic lymphocytic leukaemia, prolymphocytic leukaemia, splenic marginal zone lymphoma, angioimmnoblastic T cell lymphoma
      3. Other: Histiocytosis X, eosinophilic granuloma
    2. Storage disorders:Gaucher disease, Niemann-Pick, Tangier disease, mucopolysachroidosis
    3. Other Infiltrations: Amyloid
  4. Others: Iron deficiency anaemia

 

History and Physical Examination

  1. Fever: Fever is a feature of splenomegaly due to infections, inflammations or malignancy, particularly haematological malignancy. Usually the fever is low grade. High grade fever suggests splenic abscess.
  2. Painful splenemegaly: The nature of pain associated with splenomegaly varies with the cause of splenomegaly.
    1. An enlargement spleen from any cause can cause a dragging pain in the left upper quadrant.
    2. Acute pain left upper quadrant pain is a feature of is a feature of splenic infarct and splenic abscess. Sickle Cell anaemia is associated with small fibrotic spleen because of repeated splenic infarcts. Early in disease the spleen enlarges. Patients may present with acute pain from splenic infarcts. Enlarged spleen from any cause is predisposed to infarction. Acute pain in the left upper quadrant is also a feature of acute splenic abscess.
    3. Splenic vein thrombosis can cause splenomegly and pain in left upper quadrant or epigastric region. It may also cause generalised abdominal pain.
    4. Pancreatitis presents with abdominal pain and can cause painful splenomegaly secondary to splenic vein thrombosis.
    5. Alcohol induced pain is an uncommon but unique feature of Hodgkin lymphoma. Spleen is a common site of involvement by Hodgkin lymphoma. Such patients may have alcohol induced pain in an enlarged spleen.
  3. Pallor: Pallor in a patient with splenomegaly suggests a diagnosis of haemolytic anaemia, haemolymphatic malignancy and infective endocarditis.
  4. Clubbing: Clubbing with splenomegaly is a feature of infective endocarditis and cirrhosis of the liver.
  5. Skin rash: Skin rash in a patient with splenomegaly is seen in systemic lupus erthomatosis, infective endocarditis, lymphoma (angioimmuniblastic T Cell lymphoma, mycosis fungiodes, skin involvement with lymphoma) and drug reaction.  Each of these conditions have a distinct type of rash.
  6. Skin Pigmentation: Hyperpigmantation suggests be seen in hemachromatosis or megaloblastic anaemia. The patients with megaloblastic anaemia may also have knuckle pigmentation.
  7. Jaundice: Jaundice with enlarged spleen is a feature of haemolytic anaemia. The jaundice is usually achloruric. Patients with haemolytic anaemia are predisposed to gallstones. Obstruction of the biliary system from a calculus dislodged from the gall bladder can cause obstructive jaundice with abdominal pain and signs of acute inflammation. Splenomegaly with jaundice is a feature of advanced cirrhosis. Patients with advanced cirrhosis almost always have ascites.
  8. Lymphadenopathy: The enlargement of lymph nodes and spleen is a feature of lymphoid malignancies or diseases that stimulate the lymphoid systems viz. infections and autoimmune diseases and lymphoid malignancy.
  9. Joint symptoms: Arthropathy with splenomegaly suggests the diagnosis of rheumatoid arthritis, systemic lypus erythrmatosis or haematochromatosis.
  10. Oral symptoms: infectious mononucleosis is charecterized by pharyngitis and generalised lymphadenopathy. Bleeding gums and/or gum hypertrophy suggests a diagnosis of leukaemia. Lymphoma can cause tomsillar enlargement. Amyloid is charectetized by macroglossia.
  11. Evidence of Portal Hypertension and Liver Cell Failure: Patients with portal hypertension often have history of haemetemesis. Examination may reveal periumbilical veins (capital medusae), anterior abdominal or flank veins. Patients with evidence liver cell failures with portal hypertension (e.g. jaundice, ascites, spider angiomas, asterxis etc. see Portal Hypertension) have cirrhosis. When the jugular venous pressure is high a diagnosis of congestive cardiac failure should be considered.

Laboratory Evaluation

Haemogram; The haemogram is the most important laboratory test in evaluating a patient with splenomegaly. The significance of findings on haemogram is described in the table below.

Haemogram Finding Conditions
Pancytopenia Hypersplenism, Lymphoma (splenic marginal zone lymphoma), Hairy cell leukaemia, Myelofibrosis, systemic lupus erythrmotosis
Neutrophilic Leucocytosis Acute infections, inflammation
Leucocytosis with premature white cells Chronic myeloid leumaemia, Myeloproliferative disease, Myeloproliferative/Myelodysplastic overlap, Acute lymphoblastic leukaemia
Leucoerythroblastic anaemia Idiopathic myelofibrosis, Bone marrow infiltration
Polycythaemia Polycythaemia vera
Atypical Lymphocytes Infectious mononucleosis
Thrombocytosis Myeloproliferative disease (Chronic myeloid leukaemia, idiopathic myelofibrosis, polycythaemia vera), chronic infections like tuberculosis
Parasites Malaria, bartonelosizs, babesiosis

Other investigations are dictated by the clinical presentations. Commonly performed investigations include biochemistry, microbiology, echocardiography, endoscopy and biopsy of any lymph node or any other mass. Other investigation may be performed as indicated

Imaging

Imaging is an important aspect of evaluation of the spleen but is beyond the scope of this article. Several good reviews exist e.g Singapore Med J 56(3):133-144.

Sickle β-Thalassaemia


Sickle cell anaemia and β-thalassaemia are two common haemoglobinopathies. Co-inheritance of the two is called sickle β-thalassaemia. Sickle β-thalassaemia seen in Africa, throughout the  Mediterranean, Arabian Peninsula and sporadically in india. It has heterogeneous clinical presentation. The severity depends on the severity of the thalassaemia allele and the extent to which the impaired haemoglobin synthesis is compensated by foetal haemoglobin synthesis.

Pathophysiology

With a very few exceptions (Blood 1989; 74: 1817-22) the sickle cell and the thalassaemia gene are arranged in trans i.e on different chromosomes (βsthal). One allele is inherited from the mother and one from the father. One parent carries the a β-thalassaemia trait the other parent has a sickle cell disease that may be sickle cell anaemia, sickle β-thalassaemia or a trait. Sickle β-thalassaemia in Africa and India/Arabia is mild whereas the patients from the Mediterranean region have severe disease. As mentioned above the differences in severity have to do with severity of the β-thalassaemia and the degree to which the impaired haemoglobin A synthesis is compensated by HbF. Weatherall suggested that patients with HbA <15% follow a course similar to severe HbA and those with HbA 20-30% follow a mild course.

  1. African sickle β-thalassaemia: African patients have a mild β-thalassaemia resulting in a relatively higher HbA level and a lower risk of sickling. These patients run a mild clinical course.
  2. Arab/Indian sickle β-thalassaemia: Patients from India and the Arabian peninsula have a sickle cell haplotype that is associated with a high HbF production. The HbF retards sickling. High levels of HbF attenuate symptoms. Patients carrying this haplotype have mild symptoms even when the inherit a severe β- chain defect. Another reason of a mild phenotype in India is the interaction with α thalassaemia.
  3. Mediterranean sickle β-thalassaemia: Mediterranean patients usually inherit a severe form of  β-thalassaemia. These patients have severe sickling because there is very little HbA or HbF to offset inhibit the crystallisation of HbS. Despite only one chromosome carrying HbS the phenotype of these patients resembles sickle cell anaemia.

Clinical Picture of Sickle-β Thalassaemia

The features of sickle-β thalassaemia resemble those of other sickling disease. It is a chronic haemolytic anaemia the course of which is interrupted by acute exacerbations known as crisis. The manifestations include haemolytic anaemia, painful and other crisis, leg ulcers, priapism and complications of pregnancy. The severity of symptoms is variable. One end of the spectrum are patients, usually of origin Mediterranean descent, whose presentation is indistinguishable from sickle cell anaemia. These patients have inherit severe forms of β (β0) chain defects. Those with sickle cell-β+ thalassaemia have milder symptoms. These patients are typically of African ancestory. Unlike patients with sickle cell anaemia patients with sickle-β thalassaemia may have splenomegaly that is more prominent patients with sickle cell-β+ thalassaemia. The spleen is usually moderately enlarged but massive splenomegaly that may be associated hypersplenism neccesisating splenectomy has been reported. The effect of co-inheritance of α-thalassaemia is small. A decrease in the frequency of acute chest syndrome and leg ulcers and a higher persistence of splenomegaly is seen. Co-inheritance of α thalassemia is one of the reasons that sickle-β thalassaemia runs a milder course in India (the other being the high HbF due to the Arab-Indian haplotype of HbS).

Diagnosis

The haematological findings vary with severity. More severe phenotypes shows greater anaemia, lower MCHC, higher reticulocytes, HbF and HbA2. A variable number of sickle cells may be found. Unlike sickle cell anaemia both forms of sickle cell-β thalassaemia have an elevated HbA2. The distribution of HbA2 is very similar to heterozygous β thalassaemia. The levels of HbF are variable. High levels are found in patients with the Arab-Indian and Senegal haplotype of HbS.

Sickle cell-β0 thalassaemia needs to be differentiated from sickle cell anaemia. The presentation of both may be identical. However an offspring of a sickle cell-β0 thalassaemia patients and a carrier of β-thalassamia trait has a 25% risk of suffering from β-thalassaemia major. The offspring of a patients with sickle cell anaemia and a carrier of β thalassaemia trait does not carry the risk of β thalassaemia major. Though sickle cell-β0 thalassaemia is characterised by an elevated HbA2 and splenomegaly this can not be relied upon to differentiate between the two conditions. Family and DNA studies are needed. If the studies show one parent to be heterozygous for HbS and the other a carrier of β thalassaemia trait no further studies are needed. If any of the parent has a phenotype of sickle cell anaemia DNA studies may be the only way to make the diagnosis.

Sickle Cell β thalassaemia in cis

Almost all patients with sickle-β thalassaemia have the disorder in trans i.e. the one β globin gene is thalassaemic and the other has a the sickle mutation. Patients with HbS and thalassaemia gene in cis have been described. These patients have a mild hemolysis, HbA2 levels were 6%–7%, HbF approximately 3% and HbS of 10%–11%.

Treatment

The symptoms of sickle-β thalassaemia are due to sickling need to be treated accordingly.

Anaemia with Hyperbilirubinaemia


A 49-year-old female presented with dyspnoea on exertion of 1 month duration. Examination reviled pallor and icterus. There was no lymphadenopathy, clubbing, koilonychia, platonychia, petechiae or purpura. There was no oedema of feet. The pulse was 90/min and the blood pressure 130/70 mm of Hg. Examination of the respiratory, cardiac and nervous systems did not show any abnormality. There was no organomegaly.

The haemoglobin was 4.9 g/dL with an erythrocyte count 1.37 x 1012/L, haematocrit of 16%, MCV of 116.78 fL, MCH of 35.77 pg and MCHC 30.63 of g/L.  The leucocytes count was 2800 with 35% neutrophils and 65% lymphocytes. The platelet count was 90 x 109/L. The peripheral smear showed macrocytosis and anisocytosis. Hypersegmented neutrophils were seen. The reticulocyte count was 3%.

The bilirubin was 2.1 mg/dL with a direct bilirubin of 1.8mg/dL and an indirect bilirubin of 0.3mg/dL. The Lactate dehydrogenase was 1417IU (normal 105 – 333 IU/L).

Anaemia and unconjugated hyperbilirubinaemia are characteristic of haemolysis. Does this patient have haemolytic anaemia?

Haemolysis shortens erythrocyte lifespan and results in increases haemoglobin breakdown. Haemoglobin is made of heme and globin. Heme consists of porphyrin ring at the centre of which is iron in the ferrous state. Iron released from catabolism of heme is reused. The porphyrin ring is catabolised to bilirubin. The bilirubin is transported to the liver for conjugation and excretion (see haemoglobin catabolism). Patients of haemolytic anaemia have unconjugated hyperbilirubinaemia because the increased bilirubin production overwhelms the hepatic bilirubin conjugation capacity.

One of the characteristics of megaloblastic anaemia is ineffective erythropoiesis. Ineffective erythropoiesis is defined as a sub-optimal (fewer) production of mature erythrocytes from a proliferating pool of immature erythroblasts. Each immature erythroblast produces less than the optimal number of erythrocytes because of premature death of erythroid precursors including haemoglobinized precursors. The haemoglobin released from haemoglobinized erythroid precursors is catabolised in the same manner as haemoglobin released from lysed erythrocytes (see haemoglobin catabolism). Megaloblastic anaemias are associated with unconjugated hyperbilirubinaemia because of death of haemoglobinized erythroid precursors.

The treatment of haemolytic anaemia and megaloblastic anaemia are different? How does one differentiate megaloblastic anaemia from that because of haemolytic anaemia? Does this patients have a haemolytic anaemia or megaloblastic anaemia?

Haemolytic anaemia is characterised by shortened erythrocyte survival. Erythrocytes survival is estimated by the use of radionucleotides something that is not possible at most centres. In clinical practice, a shortened erythrocyte survival is inferred from a high reticulocyte count. Reticulocytes are erythrocytes that have been produced in the preceding 24 hours. The erythrocytes survival is about 120 days and about 1% of erythrocytes are produced every day. Consistent with this the normal reticulocyte count is 0.5-1.5%.In patients of haemolytic anaemia, ddestruction of erythrocytes is matched by an increased production by the bone marrow. This manifests as reticulocytosis (see reticulocyte count). Megaloblastic anaemia occurs because of decreased production of erythrocytes and this manifests as reticulocytopenia. The difference between haemolytic anaemia and megaloblastic anaemia is the reticulocytosis in the former reticulocytopenia in the latter. This patient had a high reticulcoyte count but after correction both the reticulocyte production index [0.43] and corrected reticulocyte count [1.07%] were low excluding haemolysis. This patient was evaluated for megaloblastic anaemia.

The haemogram has clues to differentiate between haemolytic anaemia and megaloblastic anaemia. These include

  1. A very high MCV: The MCV is very high. Patients with haemolytic anaemia have a mild elevation in MCV. An MCV value >110fL is almost exclusively found in megaloblastic anaemias because of folate and/or B12 deficiency.
  2. Pancytopenia: B12 and folate deficiency impair DNA synthesis impairing erythrpoieis, myelopoiesis and megakaryopoiesis. Nutritional megaloblastic anaemias because of vitamin B12 and/or folate deficiency may show pancytopenia.
  3. Hypersegmented neutrophils (>5% neutrophils with >5lobes) is a feature of megaloblastic anaemia

Other features of megaloblastic anaemia include rise serum transferrin receptor, increased serum iron, serum ferritin and methemalbumin levels. Like haemolytic anaemia the serum haptoglobin is low and the LDH high. LDH levels in megaloblastic anaemia can ve very high.

This patients had a low serum B12 and was treated with parental B12 (1mg alternate day for 5 doses) and was evaluated for cause of vitamin B12 deficiency. As Schilling’s test was not available a diagnosis of pernicious anaemia was made by documenting gastric atrophy and anti-parietal cell antibodies.

Calreticulin and Myeloproliferative Neoplasm


Myeloproliferative neoplasm (polycythaemia vera [PV], essential thrombocytosis [ET], progressive myelofibrosis [PMF]) are a group of diseases that are characterised by increased proliferation of blood cells, splenomegaly, myelofibrosis, thrombosis and risk of malignant transformation.  The year 2005 was a landmark year for myeloproliferative diseases. Four groups of scientists identified the presence of JAK2V617F mutations in PV. This mutation is present in about 98% patients with PV. Mutations of exon 12 of the JAK2 gene can be found in 1-2% of the PV. These patients do not show the JAK2V617F mutation. The discovery of these mutations gave a genetic definition PV making diagnosis objective.

PV is diagnosed by the presence primary erythrocytosis in the precession of a JAK2 mutation referred to above. Chronic myeloid leukaemia is diagnosed by demonstrating the BCR-ABL1 translocation. JAK2V617F is also present in 50-60% of ET and PMF. Mutation of the gene MPL is found in 1-2%  patients of ET and 5-10% of the patients with PMF. The presence of these mutation helps make diagnosis. However, The diagnosis of PMF and ET in a large proportion of patients requires exclusion of a reactive disorder and other myeloproliferative diseases because these patients (38-49% of ET and 30-45% of PMF) have no genetic marker.

Two publications have shown that a large proportion of the patients with ET and PMF who do not have JAK have mutation calreticulin (CALR) (N Engl J Med. 2013;369(25):2391-2405,  N Engl J Med. 2013;369(25):2379-2390). In addition to ET and PMF CALR mutations are found in the MDS/MPN overlap disorder and refractory anemia with ring sideroblasts with thrombocytosis (RARS-T). They are rare or absent in other myeloid or lymphoid neoplasms or solid tumors.

Calreticulin (CALR) is a major calcium binding protein. The gene for calreticulin is located on 19p13.2. About a quarter of ET and MF have mutation in the CALR gene. All CALR mutations are localised to exon 9 and generate a 1bp frameshift. As a result of this most or almost all the C terminal negative amino acids and calcium binding sites are lost.  There is a complete loss of the KDEL endoplasmic reticulum binding sequence. These mutations have been identified in the haemopoietic stem cell and progenitor compartments. CALR mutations and JAK2 mutations are mutually exclusive.

CALR mutated myeloproliferative disease have a distinct clinical profile. These patients have a lower haemoglobin, lower leukocyte count, higher platelet count and a lower risk of thrombosis. Patients of PMF carrying a CALR mutation have a longer survival than those carrying JAK2 or MPL mutations. Patients with ET carrying the CALR mutations have a longer survival than those carrying the JALK2 mutation. There is no difference between the survival of ET patients carrying CALR mutations and MPL mutations.

Mutated CALR appears to stimulate STAT pathway. It appears to physically bind with the thrombopoietin receptor to stimulate STAT. The erythropoietin receptor is not needed for this action (Blood. 2015;10.1182/blood-2015-11-681932Blood. 2015;126:LBA-4).

 

 

 

Classification of Lymphoma


Lymphomas are a group of malignancies arising from lymphoid tissue. They have a diverse etiology, pathogenesis, clinical presentation, treatment and outcomes. Morphology alone is insufficient to classify lymphomas but for a long time a pathologist had little other than morphology for diagnosis. By the 1980s many advances that were instrumental in taking lymphoma classification beyond morphology had taken place. These advances included:

  1. Recognition of lymphocyte subtypes, T, B and NK cells and development of immunological and DNA based tests to identify these cells.
  2. Hybridoma technology that made available antibodies which were used initially for lymphoma diagnosis and then in lymphoma treatment
  3. Sanger sequencing made determining the sequence of genes possible
  4. Fluorescent in situ hybridisation (FISH) allowed study the mutations in cells in interphase
  5. Chemotherapy achieved cure in some lymphomas and control in others

These technologies were instrumental in generating information about lymphomas including pathogenesis, genetics, immunophenotype and clinical course. It became apparent that lymphomas are one of the most complex malignancies in terms of pathogeneis diagnosis and treatment. Such is the heterogeneity of lymphomas that one of the aggressive (Burkitts’s lymphoma) and one of the most indolent malignancies (small lymphocytic lymphoma/chronic lymphocytic leukaemia) are both lymphomas.

Historically several lymphoma classifications have came into use. Each specialist looked at lymphomas from a different  and his/her own perspective. To the pathologist it was about defining different histological entities and how these entities related to each other. To the clinician it was about defining entities with distinct treatments and outcomes. To complicate matters similar/same entities were referred to by different names by different groups. The confusion that prevailed highlighted the need for co-operation between experts in the field of lymphoma. The first such attempt of co-operation resulted in  the REAL (Revised European American Lymphoma) classification proposed in 1994 by a group of 19 haematopathologists, the International Lymphoma Study Group. This classification used all available information (including histology, genetics, immunophenotyping and clinical course) to define entities. This approach was adapted by the WHO classifications that followed the REAL classification. The most current classification of lymphomas is the 2008 WHO classification. The milestones in the classification of lymphomas are given in the table below.

Year Classifications Features
1941 Gall and Mallory
  1. First generally accepted classification of lymphoma, defined follicular lymphoma
1947 Jackson Parker
  1. First Classification of Hodgkin Lymphoma
1956 Rapaport (Non-Hodgkin Lymphoma)
  1. Classified lymphomas in to follicular and diffuse and within each category by cell morphology.
  2. Within each category nodular lymphomas had a better outcome.
  3. Continued to regard the origins of large cell lymphomas from non-lymphoid cells
1966 Luke and Buttler
  1. Proposed a classification of Hodgkin lymphoma which from the basis of modern classification.
  2. Recognised nodular sclerosis and mixed cellularity.
  3. Recognized the L&H cell
1974 Kiel Classification (Non-Hodgkin Lymphoma)
  1. Recognised that many lymphomas resemble normal germinal centre.
  2. Classified lymphomas according to lymphocytic differentiation as understood at the time. Suggested the putative normal counterparts of lymphomas.
  3. Classified lymphomas in B and T types
1982 Working Formulation (Non-Hodgkin Lymphoma)
  1. Studied 6 classification schemes in use at the time found none to be superior. Consenseus could not be reached because of lack of agreement between pathologists.
  2. Proposed a formulation to translate amongst schemes.
  3. Stratified outcomes based on outcome of trials conducted in the 1970s. Did not use immunophenotyping.
1994 REAL Classification
  1. Developed by a group of pathologists, international lymphoma study group, that made an attempt to overcome differences and focused on identification of “real” entities by incorporating all (morphology, genetics, immunophenotype and clinical course) knowledge available at the time.
  2. Formed the basis of the currently used WHO classification
2001 and 2008 WHO Classifications
  1. The 2008 WHO lymphoma classification is the current classification
  2. Based on pathology, genetics and clinical outcomes

Classification of Lymphoma

The 2008 WHO classification was a result of international collaboration among pathologists, molecular biologists and clinicians interested in the hematological malignancies. Lymphomas are divided into three groups the

  1. B-cell neoplasm
  2. T and NK cell lymphomas

  3. Hodgkin’s lymphoma.

The non-Hodgkin lymphomas are further divided into into precursor neoplasm and peripheral/mature neoplasm. The peripheral lymphoid tissue have mature lymphocytes (peripheral lymphocytes). The precursor lymphoid cells mature in the bone marrow (B cells) and thymus (T Cells).

Lymphocyte development begins with the lymphoblast. A mature lymphocyte expresses a antigen receptor complex which consists of two parts, the antigen receptor and associated signal proteins. Immunoglobulins serve as antigen receptors of B cells. Immunoglobulins  have a constant and a variable region. The genome has many DNA segments encoding for the variable region. Antibodies have different antigen specificity because different segments are chosen to form the gene of the variable region. A wide array of antibody   specificity (millions) can be generated from combination of these DNA segments. Antibody specificity can be further diversified by a process known as somatic hypermutation referred to below. Cells that are undergoing antibody editing are precursor B cells. B cell maturation occurs when the process of antibody editing is complete. Mature B cells express a complete antigen receptor, IgD and IgM on the surface. Similarly a mature T cell is a cell that has completed the process of editing its T cell receptor.

Precursor Neoplasm

Precursor cells are cells that have not undergone the B or T cell receptor rearrangement. The malignancies of precursor lymphoid tissue incelude T and B cell lymphoblastic lymphomas and acute lymphoblastic leukaemia.

B lymphoblastic lymphoma/leukaemia is further classified into B-lymphoblastic leukaemia/lymphoma with recurrent genetic anomalies and B-lymphoblastic leukaemia/lymphoma that does not show these anomalies (B-lymphoblastic leukaemia/lymphoma NOS). The recurrent anomalies seen in B-lymphoblastic leukaemia/lymphoma are [gene rearrangements]

  1. t(9;22)(q34;q11.2) [BCR-ABL1]
  2. t(v;11q23) [MLL rearranged]
  3. t(12;21)(p13;q22) [TEL-AML1 (ETV6-RUNX1)]
  4. t(5;14)(q31;q32)[IL3-IGH]
  5. t(1;19)(q23;p13.3)[TCF3-PBX1]
  6. hyperdiploidy
  7. hypodiploidy

 

Neoplasm of the Mature (peripheral) Cells

Neoplasm of mature lymphocytes are classified into B cell neoplasms and T and NK cell neoplasms.

 

Mature B cell neoplasms

Mature B-cell neoplasm arise from B cells that have undergone B cell receptor rearrangement. Though these cells have their immunoglobulin or T cell receptors rearranged and are referred to as mature the process of maturation is not complete. They undergo a final phase of maturation on exposure to antigens that results in increased antibody avidity. This process takes place in the germinal centre. Antibody avidity is increased by inducing mutations in the DNA segments encoding for the variable regions. This process known as somatic hypermutation.  Somatic hypermutation is a considered to be an evidence of a cell that has passed through the germinal centre (and hence been exposed to antigen). Somatic hypermutations result in a spectrum of avidity (both higher and lower than the original cell). Cells producing highest affinity antibodies survive to form memory B cells or mature to antibody secreting plasma cells. The rest undergo apoptosis. Mutations and apoptosis are two phenomena central to malignant transformation. Germinal centre cells are subject to both. It is not surprising that the germinal centre is the site of the largest number of lymphomas. Diffuses large B Cell lymphoma, follicular lymphoma, Hodgkin’s lymphoma classical and nodular lymphocyte predominant and Burkitts’s lymphoma originate in the germinal centre. Together these constitute almost two third of the lymphomas. Most mantle cell lymphomas originate from cells that have yet to enter the germinal centre. Chronic lymphocytic leukaemia, marginal zone lymphomas, plasma cell neoplasms and lymphoplasmacytic lymphomas arise from cells that have passed through the germinal centre.

Diffuse large B cell lymphoma (DLBCL) is a lymphoma composed of B cells where the size of malignant cells is equal to or exceeds the size of a macrophage nucleus. DLBCL is the most common lymphoma across the world. All DLBCLs are aggressive lymphomas. The commonest form of DLBCL lacks any special features and is known as DLBCL NOS (not otherwise specified). There four DLBCL subtypes. EBV positive DLBCL of the elderly is a provisional entity in the 2008 WHO classification.

  1. T Cell/histiocyte rich DLBCL (THRLBCL): THRLBCL is a rare variant of DLBCL that is characterised by scattered large B cells that comprise about 10% of the cells in reactive infiltrate that is abundant in T cells with frequent histiocytes.  It resembles Hodgkin’s lymphoma in having a paucity of malignant cells and an abundance of infiltrate. Some TCRLBCL may be arising from progression of nodular lymphocytic predominant Hodgkin’s lymphoma.
  2. Primary CNS DLBCL: Primary CNS DLBCL forms about 90% of primary CNS lymphomas.
  3. Primary cutaneous DLBCL, leg type: Primary cutaneous DLBCL, leg type is a cutaneous lymphoma most commonly arising in the leg. Unlike other DLBCL women are affected more often than men.
  4. EBV positive DLBCL of the elderly

Other forms of DLBCL include those having special anatomical sites (primary mediastinal B cell lymphoma, intravascular lymphoma), histological features (ALK positive large B cell lymphoma, de novo CD5+ large B cell lymphoma) and pathogenesis (large B cell lymphoma arising out of HHV-8 associated Castleman’s disease, pleural effusion lymphoma)

Follicular lymphomas (FL) arise from germinal centres. They have follicle centre (centerocytes/small cell) and large (centroblasts/transformed) arranged at least in a partially follicular pattern. Eighty percent of the patients have the t(14;18)(q32;q21) translocation that results in fusion of immunoglobulin heavy chain gene with BCL2. FL is divided into three categories according to the number of centrblasts. Grade 1-2 FL have 0-15 centroblasts per high power field, Grade 3A FL has >15 centeroblasts per high power field and 3B FL shows solid sheets of centroblasts. Grade 1-2 and Grade 3A FL are indolent lymphomas and Grade 3B is an aggressive lymphoma to be treated as DLBCL.

Small lymphocytic lymphoma (SLL) is a lymphoma that consists small lymphocytes that co-express CD19 and Cd5. It is the nodal counterpart of chronic lymphocytic leukaemia (CLL) and the entity is referred to as CLL/SLL. Patients having lymph node involvement and <5 X 109/L lymphocytes are classified as SLL. Patients with ≥5 X109/L lymphocytes are said to have CLL. The normal counterpart of SLL is the antigen experienced B cell.

Marginal zone lymphomas (MZL) are indolent lymphomas. They are of three types, nodal MZL, extranodal lymphomas of the mucosa associated lymphoid tissue (MALT) and splenic marginal zone lymphomas (SMZL). They arise from post-germinal memory B lymphocytes in the marginal zone of the germinal follicles. About one third of the patients of SMZL do not have somatic hypermutation of the variable regions of the immunoglobulins. The cell of origin is in these SMZL is not known. MZL are peculiar amongst lymphomas in being related to infection. Gastric MALT lymphomas are associated with H. pylori infection, ocular adnexal MALT lymphoma is associated with Chlaymydia psittaci, immunoproliferative small intestinal disease (IPSID) with Campylobacter jejuni, and cutaneous MALT lymphoma with Borrelia burgdorferi. Hepatitis C infection is associated with splenic marginal zone lymphoma.

Mantle cell lymphomas are lymphomas small to medium sized cells that arise form peripheral B cells of the inner mantle zone. It is associated with the t(11;14)(q13;q32) translocation that results in the formation of the IGH@-CCND1 (Cyclin D1) fusion gene. Cyclin D1 can be detected on almost all mantle cell lymphomas by immunohostochemistry.

Burkitts lymphoma (BL) is a lymphoma composed of medium sized cells (nuclei similar to or smaller than histiocytes) that show a diffuse monotonous pattern. The tumour has a very high proliferation index and shows many mitotic figures and a high fraction of apoptosis. It is characterised by translocation that dysregulate the oncogene MYC. These include the t(8;14)(q24;q32) translocation that IGH@ (immunoglobulin heavy chain locus)  to MYC and is the commonest translocation in Burkitt’s lymphoma, the t(2;8)(p12;q24) that translocates the IGK@ (kappa light chain locus) to MYC and t(8;22)(q24;q11) that translocates IGL@ (lambda light chain locus) to MYC. There are two forms of Burkitt’s lymphoma. The Endemic BL occurs in equatorial Africa, affects children and has the EBV genome in majority of the neoplastic cells. The sporadic BL is seen in other parts of the world, is most common in young adults and shows EBV genome only in about 30% of the patients. Sporadic BL is a immunosuppression related malignancy seen in HIV and other forms of immunosuppression.

Lymphoplasmacytic lymphoma is a mature B cell lymphoma that is made of small B lymphocytes and plasmacytoid lymphocytes. These lymphocytes often secret IgM resulting in the syndrome Waldenström macroglobulinaemia. IgM Secretion however in not essential for diagnosis. The normal counterpart of lymphoplasmacytic lymphoma is the post germinal B cell that differentiates into a plasma cell.

Other rarer lymphomas have been described elsewhere (WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues)

 

Mature T-cell and NK neoplasm

The differentiation of T lymphocytes is not understood as well as that of the B lymphomas.  Clinical picture plays a more important role in the diagnosis of T cell/NK cell lymphomas. T cells carry a more diverse set of function than B lymphocytes. These include cytotoxic functions, aiding other cells of the immune system and regulation of immunity. Many subtypes of T cells are recognised. Like B cells, the T cells have a antigen receptor complex. This consists of and antigen receptor and associated signal proteins. The T cell receptor is made of a pair of chains. There are four T cell receptor chains, α, β, δ and γ. These give rise to two types of T cell receptor the αβ  and δγ. Ninty five percent of the T lymphocytes have the αβ receptors and about 5% of the at T cells have δγ receptors. The δγ T cells and NK cells are a part of the innate immune system. Malignancies of these cells are common children and young adults. These include aggressive NK cell leukaemia, systemic EBV positive lymphoproliferative disease of the childhood, most hepatosplenic T cell lymphomas and δγ-T cell lymphoma.

T cells of the adaptive immune system include naive T cells, helper/regulatory T cells, cytotoxic T cells and memory T cells. Regulatory  cells express CD4. Depending on the cytokine secreting profile these cells are of two types Th1 and Th2. Th1 cells produce IL2 and INFγ that mainly help T cells and macrophages. Th2 cells secrete IL-4, IL-5, IL-6 and IL-10 and mainly help B cell. Follicular helper T cells are T cells that help the germinal centre reaction. In addition to the T cell markers they express germinal centre markers BCL6 and CD10. They also express CD57 and PD-1. Regulatory T cells are cells that suppress immune response. They express CD25.

Lymphomas of the T cells of the adaptive immune system are nodal and occur in adults.

Peripheral T cell lymphoma not otherwise specified (PTCL NOS) is a heterogenous group of malignancies of the peripheral T cells. Its is a basket entity that includes peripheral T cell lymphomas that lack any specific features (unlike the ones listed below). It is the commonest peripheral T cell lymphoma. Gene expression profiling has identified two subtypes of PTCL NOS. Lymphomas arising from the Th1 cells and those arising from Th2 cells.

Anaplastic large cell lymphoma (ALCL) is the second most common T peripheral T cell lymphoma. The normal counterpart of ALCL is not known. ALCL has two subtypes depending on the expression of the anaplastic lymphoma kinase (ALK), ALK+ ALCL and ALK -ve ALCL. These have distinct clinical picture.

Angioimmunoblastic T cell lymphoma (AITL) arises from follicular helper T cells. It usually disseminated at presentation.  It is characterised by generalised lymphadenopathy, systemic symptoms and polyclonal hypergammaglobulinaemia. The patients have immune phenomena including circulating immune complexes, cold agglutinins with haemolytic anaemia, rheumatoid factor and anti-smooth muscle antibodies. These are attributed to polyclonal proliferation of B lymphocytes (which are not the malignant lymphocytes).

Adult T cell Leukaemia/lymphoma is a lymphoma composed of highly pleomorphic lymphoid cells. It is seen in Southwest Japan, Caribbean and parts of Central Africa and is caused by the retrovirus HTLV-I. The clinical types include acute, lymphomatous, chronic and smoldering. Patients often have hypercalcaemia and often have immunodeficiency.

Skin unlike other organs has a higher proportions of T cell lymphomas than B cell lymphomas. These include Mycosis fungoides, Sezary syndrome and the primary cutaneous CD30+ T cell lymphoproliferative disorder, primary cutaneous T cell lymphomas, subcutaneous panniculitis like T cell lymphoma.

Other rare T cell lymphomas include T cell prolymphocytic leukaemia, T-cell Large Granular lymphocytic leukaemia, Extranodal NK/T cell lymphoma, nasal type, enteropathy associated T cell lymphoma and hepasplenic T-Cell lymphoma. A complete list is given elsewhere (WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues)

 

Hodgkin lymphoma

Hodgkin’s lymphoma is of two types classical and modular lymphocytic predominant. The uncertainty that surrounded the cell of origin of Hodgkin’s lymphoma was ended when microdissected Reed-Sternberg cells were shown to be of B cell origin. The classical Hodgkin’s lymphoma is further divided into lymphocyte rich, nodular sclerosis, mixed cellularity and lymphocyte depletion types.

 

References

  1. Elaine S. Jaffe, Nancy Lee Harris, Harald Stein, and Peter G. Isaacson. Classification of lymphoid neoplasms: the microscope as a tool for disease discovery. Blood. 2008 Dec 1; 112(12): 4384–4399.
  2. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues

 

From Hodgkin’s Disease to Hodgkin Lymphoma


Hodgkin lymphoma was described by Thomas Hodgkin in 1932. It was referred to as Hodgkin’s disease till the WHO classification proposed the use of the term Hodgkin Lymphoma. The journey from Hodgkin’s disease to Hodgkin Lymphoma was possible because of breakthroughs immunophonotyping, molecular biology and microdissection.

The difference between Hodgkin’s disease and Hodgkin lymphoma is not about semantics. The term lymphoma recognises the disorder to be malignant whereas the term “disease” was ambiguous. Unlike any other malignancy the bulk the tumour in patients with Hodgkin lymphoma is made of normal reactive cells, lymphocytes, neutrophils, eosinophils and plasma cells. Reed-Sternberg (RS) is the malignant cell of classical Hodgkin lymphoma (cHL) and the LP cell is the malignant cell of nodular lymphocytic predominant Hodgkin lymphoma (NLPHL). Both cells form a small minority of the tumour mass. The combination of a bizarre looking cell that are sparsely distributed in what looked like a chronic inflammatory infiltrate was unlike any other malignancy and was the cause of uncertainty about the malignant nature of Hodgkin lymphoma. The term Hodgkin’s diseases reflected this uncertainty.

Malignancy is driven by mutations in genes regulating growth and differentiation. Many mutations result from chromosomal defects that can be demonstrated by karyotyping. The RS cell and the LP cell from a small proportion of the tumour mass. A pure population of malignant cells was needed for karyotyping. Today it is possible to separate out these cells from tissue by laser micro dissection. Before this technology became available the only way to get a pure population of RS cells was by establishing cell lines from patients suffering from Hodgkin’s disease. Study of cell lines as well as laser dissected RS cells showed the cells to have karyotype anomalies confirming the disease was a malignancy.

Another area of confusion was the cell of origin of Hodgkin lymphoma. The cells that had been suggested to be giving rise to RS cell included B-lymphocyte, T-lymphocyte, reticulum cell, dendritic cell and histiocyte/macrophage. Molecular studies have shown that the RS cell originates from the pre-apoptotic germinal centre B cell and the LP cell originates from the antigen selected germinal centre B cell. The former does not express the classical B cell markers the latter does. There are multiple reasons for the lack of expression of B cell markers and these include expression of inhibitors of B-cell molecules, down-regulation of B-cell transcription factors and the epigenetic silencing of B-cell genes.

Hodgkin lymphoma is a malignancy of germinal B cell origin and the term lymphoma describes the disease more accurately than the word disease. WHO classification of lymphoid malignancies refers to the disorder as Hodgkin Lymphoma in recognition of this fact.