Anaemia with Hyperbilirubinaemia

A 49-year-old female presented with dyspnoea on exertion of 1 month duration. Examination reviled pallor and icterus. There was no lymphadenopathy, clubbing, koilonychia, platonychia, petechiae or purpura. There was no oedema of feet. The pulse was 90/min and the blood pressure 130/70 mm of Hg. Examination of the respiratory, cardiac and nervous systems did not show any abnormality. There was no organomegaly.

The haemoglobin was 4.9 g/dL with an erythrocyte count 1.37 x 1012/L, haematocrit of 16%, MCV of 116.78 fL, MCH of 35.77 pg and MCHC 30.63 of g/L.  The leucocytes count was 2800 with 35% neutrophils and 65% lymphocytes. The platelet count was 90 x 109/L. The peripheral smear showed macrocytosis and anisocytosis. Hypersegmented neutrophils were seen. The reticulocyte count was 3%.

The bilirubin was 2.1 mg/dL with a direct bilirubin of 1.8mg/dL and an indirect bilirubin of 0.3mg/dL. The Lactate dehydrogenase was 1417IU (normal 105 – 333 IU/L).

Anaemia and unconjugated hyperbilirubinaemia are characteristic of haemolysis. Does this patient have haemolytic anaemia?

Haemolysis shortens erythrocyte lifespan and results in increases haemoglobin breakdown. Haemoglobin is made of heme and globin. Heme consists of porphyrin ring at the centre of which is iron in the ferrous state. Iron released from catabolism of heme is reused. The porphyrin ring is catabolised to bilirubin. The bilirubin is transported to the liver for conjugation and excretion (see haemoglobin catabolism). Patients of haemolytic anaemia have unconjugated hyperbilirubinaemia because the increased bilirubin production overwhelms the hepatic bilirubin conjugation capacity.

One of the characteristics of megaloblastic anaemia is ineffective erythropoiesis. Ineffective erythropoiesis is defined as a sub-optimal (fewer) production of mature erythrocytes from a proliferating pool of immature erythroblasts. Each immature erythroblast produces less than the optimal number of erythrocytes because of premature death of erythroid precursors including haemoglobinized precursors. The haemoglobin released from haemoglobinized erythroid precursors is catabolised in the same manner as haemoglobin released from lysed erythrocytes (see haemoglobin catabolism). Megaloblastic anaemias are associated with unconjugated hyperbilirubinaemia because of death of haemoglobinized erythroid precursors.

The treatment of haemolytic anaemia and megaloblastic anaemia are different? How does one differentiate megaloblastic anaemia from that because of haemolytic anaemia? Does this patients have a haemolytic anaemia or megaloblastic anaemia?

Haemolytic anaemia is characterised by shortened erythrocyte survival. Erythrocytes survival is estimated by the use of radionucleotides something that is not possible at most centres. In clinical practice, a shortened erythrocyte survival is inferred from a high reticulocyte count. Reticulocytes are erythrocytes that have been produced in the preceding 24 hours. The erythrocytes survival is about 120 days and about 1% of erythrocytes are produced every day. Consistent with this the normal reticulocyte count is 0.5-1.5%.In patients of haemolytic anaemia, ddestruction of erythrocytes is matched by an increased production by the bone marrow. This manifests as reticulocytosis (see reticulocyte count). Megaloblastic anaemia occurs because of decreased production of erythrocytes and this manifests as reticulocytopenia. The difference between haemolytic anaemia and megaloblastic anaemia is the reticulocytosis in the former reticulocytopenia in the latter. This patient had a high reticulcoyte count but after correction both the reticulocyte production index [0.43] and corrected reticulocyte count [1.07%] were low excluding haemolysis. This patient was evaluated for megaloblastic anaemia.

The haemogram has clues to differentiate between haemolytic anaemia and megaloblastic anaemia. These include

  1. A very high MCV: The MCV is very high. Patients with haemolytic anaemia have a mild elevation in MCV. An MCV value >110fL is almost exclusively found in megaloblastic anaemias because of folate and/or B12 deficiency.
  2. Pancytopenia: B12 and folate deficiency impair DNA synthesis impairing erythrpoieis, myelopoiesis and megakaryopoiesis. Nutritional megaloblastic anaemias because of vitamin B12 and/or folate deficiency may show pancytopenia.
  3. Hypersegmented neutrophils (>5% neutrophils with >5lobes) is a feature of megaloblastic anaemia

Other features of megaloblastic anaemia include rise serum transferrin receptor, increased serum iron, serum ferritin and methemalbumin levels. Like haemolytic anaemia the serum haptoglobin is low and the LDH high. LDH levels in megaloblastic anaemia can ve very high.

This patients had a low serum B12 and was treated with parental B12 (1mg alternate day for 5 doses) and was evaluated for cause of vitamin B12 deficiency. As Schilling’s test was not available a diagnosis of pernicious anaemia was made by documenting gastric atrophy and anti-parietal cell antibodies.

Advertisements

One Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s