Classification of Lymphoma

Lymphomas are a group of malignancies arising from lymphoid tissue. They have a diverse etiology, pathogenesis, clinical presentation, treatment and outcomes. Morphology alone is insufficient to classify lymphomas but for a long time a pathologist had little other than morphology for diagnosis. By the 1980s many advances that were instrumental in taking lymphoma classification beyond morphology had taken place. These advances included:

  1. Recognition of lymphocyte subtypes, T, B and NK cells and development of immunological and DNA based tests to identify these cells.
  2. Hybridoma technology that made available antibodies which were used initially for lymphoma diagnosis and then in lymphoma treatment
  3. Sanger sequencing made determining the sequence of genes possible
  4. Fluorescent in situ hybridisation (FISH) allowed study the mutations in cells in interphase
  5. Chemotherapy achieved cure in some lymphomas and control in others

These technologies were instrumental in generating information about lymphomas including pathogenesis, genetics, immunophenotype and clinical course. It became apparent that lymphomas are one of the most complex malignancies in terms of pathogeneis diagnosis and treatment. Such is the heterogeneity of lymphomas that one of the aggressive (Burkitts’s lymphoma) and one of the most indolent malignancies (small lymphocytic lymphoma/chronic lymphocytic leukaemia) are both lymphomas.

Historically several lymphoma classifications have came into use. Each specialist looked at lymphomas from a different  and his/her own perspective. To the pathologist it was about defining different histological entities and how these entities related to each other. To the clinician it was about defining entities with distinct treatments and outcomes. To complicate matters similar/same entities were referred to by different names by different groups. The confusion that prevailed highlighted the need for co-operation between experts in the field of lymphoma. The first such attempt of co-operation resulted in  the REAL (Revised European American Lymphoma) classification proposed in 1994 by a group of 19 haematopathologists, the International Lymphoma Study Group. This classification used all available information (including histology, genetics, immunophenotyping and clinical course) to define entities. This approach was adapted by the WHO classifications that followed the REAL classification. The most current classification of lymphomas is the 2008 WHO classification. The milestones in the classification of lymphomas are given in the table below.

Year Classifications Features
1941 Gall and Mallory
  1. First generally accepted classification of lymphoma, defined follicular lymphoma
1947 Jackson Parker
  1. First Classification of Hodgkin Lymphoma
1956 Rapaport (Non-Hodgkin Lymphoma)
  1. Classified lymphomas in to follicular and diffuse and within each category by cell morphology.
  2. Within each category nodular lymphomas had a better outcome.
  3. Continued to regard the origins of large cell lymphomas from non-lymphoid cells
1966 Luke and Buttler
  1. Proposed a classification of Hodgkin lymphoma which from the basis of modern classification.
  2. Recognised nodular sclerosis and mixed cellularity.
  3. Recognized the L&H cell
1974 Kiel Classification (Non-Hodgkin Lymphoma)
  1. Recognised that many lymphomas resemble normal germinal centre.
  2. Classified lymphomas according to lymphocytic differentiation as understood at the time. Suggested the putative normal counterparts of lymphomas.
  3. Classified lymphomas in B and T types
1982 Working Formulation (Non-Hodgkin Lymphoma)
  1. Studied 6 classification schemes in use at the time found none to be superior. Consenseus could not be reached because of lack of agreement between pathologists.
  2. Proposed a formulation to translate amongst schemes.
  3. Stratified outcomes based on outcome of trials conducted in the 1970s. Did not use immunophenotyping.
1994 REAL Classification
  1. Developed by a group of pathologists, international lymphoma study group, that made an attempt to overcome differences and focused on identification of “real” entities by incorporating all (morphology, genetics, immunophenotype and clinical course) knowledge available at the time.
  2. Formed the basis of the currently used WHO classification
2001 and 2008 WHO Classifications
  1. The 2008 WHO lymphoma classification is the current classification
  2. Based on pathology, genetics and clinical outcomes

Classification of Lymphoma

The 2008 WHO classification was a result of international collaboration among pathologists, molecular biologists and clinicians interested in the hematological malignancies. Lymphomas are divided into three groups the

  1. B-cell neoplasm
  2. T and NK cell lymphomas

  3. Hodgkin’s lymphoma.

The non-Hodgkin lymphomas are further divided into into precursor neoplasm and peripheral/mature neoplasm. The peripheral lymphoid tissue have mature lymphocytes (peripheral lymphocytes). The precursor lymphoid cells mature in the bone marrow (B cells) and thymus (T Cells).

Lymphocyte development begins with the lymphoblast. A mature lymphocyte expresses a antigen receptor complex which consists of two parts, the antigen receptor and associated signal proteins. Immunoglobulins serve as antigen receptors of B cells. Immunoglobulins  have a constant and a variable region. The genome has many DNA segments encoding for the variable region. Antibodies have different antigen specificity because different segments are chosen to form the gene of the variable region. A wide array of antibody   specificity (millions) can be generated from combination of these DNA segments. Antibody specificity can be further diversified by a process known as somatic hypermutation referred to below. Cells that are undergoing antibody editing are precursor B cells. B cell maturation occurs when the process of antibody editing is complete. Mature B cells express a complete antigen receptor, IgD and IgM on the surface. Similarly a mature T cell is a cell that has completed the process of editing its T cell receptor.

Precursor Neoplasm

Precursor cells are cells that have not undergone the B or T cell receptor rearrangement. The malignancies of precursor lymphoid tissue incelude T and B cell lymphoblastic lymphomas and acute lymphoblastic leukaemia.

B lymphoblastic lymphoma/leukaemia is further classified into B-lymphoblastic leukaemia/lymphoma with recurrent genetic anomalies and B-lymphoblastic leukaemia/lymphoma that does not show these anomalies (B-lymphoblastic leukaemia/lymphoma NOS). The recurrent anomalies seen in B-lymphoblastic leukaemia/lymphoma are [gene rearrangements]

  1. t(9;22)(q34;q11.2) [BCR-ABL1]
  2. t(v;11q23) [MLL rearranged]
  3. t(12;21)(p13;q22) [TEL-AML1 (ETV6-RUNX1)]
  4. t(5;14)(q31;q32)[IL3-IGH]
  5. t(1;19)(q23;p13.3)[TCF3-PBX1]
  6. hyperdiploidy
  7. hypodiploidy

 

Neoplasm of the Mature (peripheral) Cells

Neoplasm of mature lymphocytes are classified into B cell neoplasms and T and NK cell neoplasms.

 

Mature B cell neoplasms

Mature B-cell neoplasm arise from B cells that have undergone B cell receptor rearrangement. Though these cells have their immunoglobulin or T cell receptors rearranged and are referred to as mature the process of maturation is not complete. They undergo a final phase of maturation on exposure to antigens that results in increased antibody avidity. This process takes place in the germinal centre. Antibody avidity is increased by inducing mutations in the DNA segments encoding for the variable regions. This process known as somatic hypermutation.  Somatic hypermutation is a considered to be an evidence of a cell that has passed through the germinal centre (and hence been exposed to antigen). Somatic hypermutations result in a spectrum of avidity (both higher and lower than the original cell). Cells producing highest affinity antibodies survive to form memory B cells or mature to antibody secreting plasma cells. The rest undergo apoptosis. Mutations and apoptosis are two phenomena central to malignant transformation. Germinal centre cells are subject to both. It is not surprising that the germinal centre is the site of the largest number of lymphomas. Diffuses large B Cell lymphoma, follicular lymphoma, Hodgkin’s lymphoma classical and nodular lymphocyte predominant and Burkitts’s lymphoma originate in the germinal centre. Together these constitute almost two third of the lymphomas. Most mantle cell lymphomas originate from cells that have yet to enter the germinal centre. Chronic lymphocytic leukaemia, marginal zone lymphomas, plasma cell neoplasms and lymphoplasmacytic lymphomas arise from cells that have passed through the germinal centre.

Diffuse large B cell lymphoma (DLBCL) is a lymphoma composed of B cells where the size of malignant cells is equal to or exceeds the size of a macrophage nucleus. DLBCL is the most common lymphoma across the world. All DLBCLs are aggressive lymphomas. The commonest form of DLBCL lacks any special features and is known as DLBCL NOS (not otherwise specified). There four DLBCL subtypes. EBV positive DLBCL of the elderly is a provisional entity in the 2008 WHO classification.

  1. T Cell/histiocyte rich DLBCL (THRLBCL): THRLBCL is a rare variant of DLBCL that is characterised by scattered large B cells that comprise about 10% of the cells in reactive infiltrate that is abundant in T cells with frequent histiocytes.  It resembles Hodgkin’s lymphoma in having a paucity of malignant cells and an abundance of infiltrate. Some TCRLBCL may be arising from progression of nodular lymphocytic predominant Hodgkin’s lymphoma.
  2. Primary CNS DLBCL: Primary CNS DLBCL forms about 90% of primary CNS lymphomas.
  3. Primary cutaneous DLBCL, leg type: Primary cutaneous DLBCL, leg type is a cutaneous lymphoma most commonly arising in the leg. Unlike other DLBCL women are affected more often than men.
  4. EBV positive DLBCL of the elderly

Other forms of DLBCL include those having special anatomical sites (primary mediastinal B cell lymphoma, intravascular lymphoma), histological features (ALK positive large B cell lymphoma, de novo CD5+ large B cell lymphoma) and pathogenesis (large B cell lymphoma arising out of HHV-8 associated Castleman’s disease, pleural effusion lymphoma)

Follicular lymphomas (FL) arise from germinal centres. They have follicle centre (centerocytes/small cell) and large (centroblasts/transformed) arranged at least in a partially follicular pattern. Eighty percent of the patients have the t(14;18)(q32;q21) translocation that results in fusion of immunoglobulin heavy chain gene with BCL2. FL is divided into three categories according to the number of centrblasts. Grade 1-2 FL have 0-15 centroblasts per high power field, Grade 3A FL has >15 centeroblasts per high power field and 3B FL shows solid sheets of centroblasts. Grade 1-2 and Grade 3A FL are indolent lymphomas and Grade 3B is an aggressive lymphoma to be treated as DLBCL.

Small lymphocytic lymphoma (SLL) is a lymphoma that consists small lymphocytes that co-express CD19 and Cd5. It is the nodal counterpart of chronic lymphocytic leukaemia (CLL) and the entity is referred to as CLL/SLL. Patients having lymph node involvement and <5 X 109/L lymphocytes are classified as SLL. Patients with ≥5 X109/L lymphocytes are said to have CLL. The normal counterpart of SLL is the antigen experienced B cell.

Marginal zone lymphomas (MZL) are indolent lymphomas. They are of three types, nodal MZL, extranodal lymphomas of the mucosa associated lymphoid tissue (MALT) and splenic marginal zone lymphomas (SMZL). They arise from post-germinal memory B lymphocytes in the marginal zone of the germinal follicles. About one third of the patients of SMZL do not have somatic hypermutation of the variable regions of the immunoglobulins. The cell of origin is in these SMZL is not known. MZL are peculiar amongst lymphomas in being related to infection. Gastric MALT lymphomas are associated with H. pylori infection, ocular adnexal MALT lymphoma is associated with Chlaymydia psittaci, immunoproliferative small intestinal disease (IPSID) with Campylobacter jejuni, and cutaneous MALT lymphoma with Borrelia burgdorferi. Hepatitis C infection is associated with splenic marginal zone lymphoma.

Mantle cell lymphomas are lymphomas small to medium sized cells that arise form peripheral B cells of the inner mantle zone. It is associated with the t(11;14)(q13;q32) translocation that results in the formation of the IGH@-CCND1 (Cyclin D1) fusion gene. Cyclin D1 can be detected on almost all mantle cell lymphomas by immunohostochemistry.

Burkitts lymphoma (BL) is a lymphoma composed of medium sized cells (nuclei similar to or smaller than histiocytes) that show a diffuse monotonous pattern. The tumour has a very high proliferation index and shows many mitotic figures and a high fraction of apoptosis. It is characterised by translocation that dysregulate the oncogene MYC. These include the t(8;14)(q24;q32) translocation that IGH@ (immunoglobulin heavy chain locus)  to MYC and is the commonest translocation in Burkitt’s lymphoma, the t(2;8)(p12;q24) that translocates the IGK@ (kappa light chain locus) to MYC and t(8;22)(q24;q11) that translocates IGL@ (lambda light chain locus) to MYC. There are two forms of Burkitt’s lymphoma. The Endemic BL occurs in equatorial Africa, affects children and has the EBV genome in majority of the neoplastic cells. The sporadic BL is seen in other parts of the world, is most common in young adults and shows EBV genome only in about 30% of the patients. Sporadic BL is a immunosuppression related malignancy seen in HIV and other forms of immunosuppression.

Lymphoplasmacytic lymphoma is a mature B cell lymphoma that is made of small B lymphocytes and plasmacytoid lymphocytes. These lymphocytes often secret IgM resulting in the syndrome Waldenström macroglobulinaemia. IgM Secretion however in not essential for diagnosis. The normal counterpart of lymphoplasmacytic lymphoma is the post germinal B cell that differentiates into a plasma cell.

Other rarer lymphomas have been described elsewhere (WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues)

 

Mature T-cell and NK neoplasm

The differentiation of T lymphocytes is not understood as well as that of the B lymphomas.  Clinical picture plays a more important role in the diagnosis of T cell/NK cell lymphomas. T cells carry a more diverse set of function than B lymphocytes. These include cytotoxic functions, aiding other cells of the immune system and regulation of immunity. Many subtypes of T cells are recognised. Like B cells, the T cells have a antigen receptor complex. This consists of and antigen receptor and associated signal proteins. The T cell receptor is made of a pair of chains. There are four T cell receptor chains, α, β, δ and γ. These give rise to two types of T cell receptor the αβ  and δγ. Ninty five percent of the T lymphocytes have the αβ receptors and about 5% of the at T cells have δγ receptors. The δγ T cells and NK cells are a part of the innate immune system. Malignancies of these cells are common children and young adults. These include aggressive NK cell leukaemia, systemic EBV positive lymphoproliferative disease of the childhood, most hepatosplenic T cell lymphomas and δγ-T cell lymphoma.

T cells of the adaptive immune system include naive T cells, helper/regulatory T cells, cytotoxic T cells and memory T cells. Regulatory  cells express CD4. Depending on the cytokine secreting profile these cells are of two types Th1 and Th2. Th1 cells produce IL2 and INFγ that mainly help T cells and macrophages. Th2 cells secrete IL-4, IL-5, IL-6 and IL-10 and mainly help B cell. Follicular helper T cells are T cells that help the germinal centre reaction. In addition to the T cell markers they express germinal centre markers BCL6 and CD10. They also express CD57 and PD-1. Regulatory T cells are cells that suppress immune response. They express CD25.

Lymphomas of the T cells of the adaptive immune system are nodal and occur in adults.

Peripheral T cell lymphoma not otherwise specified (PTCL NOS) is a heterogenous group of malignancies of the peripheral T cells. Its is a basket entity that includes peripheral T cell lymphomas that lack any specific features (unlike the ones listed below). It is the commonest peripheral T cell lymphoma. Gene expression profiling has identified two subtypes of PTCL NOS. Lymphomas arising from the Th1 cells and those arising from Th2 cells.

Anaplastic large cell lymphoma (ALCL) is the second most common T peripheral T cell lymphoma. The normal counterpart of ALCL is not known. ALCL has two subtypes depending on the expression of the anaplastic lymphoma kinase (ALK), ALK+ ALCL and ALK -ve ALCL. These have distinct clinical picture.

Angioimmunoblastic T cell lymphoma (AITL) arises from follicular helper T cells. It usually disseminated at presentation.  It is characterised by generalised lymphadenopathy, systemic symptoms and polyclonal hypergammaglobulinaemia. The patients have immune phenomena including circulating immune complexes, cold agglutinins with haemolytic anaemia, rheumatoid factor and anti-smooth muscle antibodies. These are attributed to polyclonal proliferation of B lymphocytes (which are not the malignant lymphocytes).

Adult T cell Leukaemia/lymphoma is a lymphoma composed of highly pleomorphic lymphoid cells. It is seen in Southwest Japan, Caribbean and parts of Central Africa and is caused by the retrovirus HTLV-I. The clinical types include acute, lymphomatous, chronic and smoldering. Patients often have hypercalcaemia and often have immunodeficiency.

Skin unlike other organs has a higher proportions of T cell lymphomas than B cell lymphomas. These include Mycosis fungoides, Sezary syndrome and the primary cutaneous CD30+ T cell lymphoproliferative disorder, primary cutaneous T cell lymphomas, subcutaneous panniculitis like T cell lymphoma.

Other rare T cell lymphomas include T cell prolymphocytic leukaemia, T-cell Large Granular lymphocytic leukaemia, Extranodal NK/T cell lymphoma, nasal type, enteropathy associated T cell lymphoma and hepasplenic T-Cell lymphoma. A complete list is given elsewhere (WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues)

 

Hodgkin lymphoma

Hodgkin’s lymphoma is of two types classical and modular lymphocytic predominant. The uncertainty that surrounded the cell of origin of Hodgkin’s lymphoma was ended when microdissected Reed-Sternberg cells were shown to be of B cell origin. The classical Hodgkin’s lymphoma is further divided into lymphocyte rich, nodular sclerosis, mixed cellularity and lymphocyte depletion types.

 

References

  1. Elaine S. Jaffe, Nancy Lee Harris, Harald Stein, and Peter G. Isaacson. Classification of lymphoid neoplasms: the microscope as a tool for disease discovery. Blood. 2008 Dec 1; 112(12): 4384–4399.
  2. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s